
Git
Notes for ProfessionalsGit®

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Git® group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

100+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with Git 2 ..
Section 1.1: Create your first repository, then add and commit files 2 ..
Section 1.2: Clone a repository 4 ...
Section 1.3: Sharing code 4 ..
Section 1.4: Setting your user name and email 5 ..
Section 1.5: Setting up the upstream remote 6 ..
Section 1.6: Learning about a command 6 ..
Section 1.7: Set up SSH for Git 6 ..
Section 1.8: Git Installation 7 ..

Chapter 2: Browsing the history 10 ...
Section 2.1: "Regular" Git Log 10 ...
Section 2.2: Prettier log 11 ...
Section 2.3: Colorize Logs 11 ...
Section 2.4: Oneline log 11 ..
Section 2.5: Log search 12 ...
Section 2.6: List all contributions grouped by author name 12 ...
Section 2.7: Searching commit string in git log 13 ..
Section 2.8: Log for a range of lines within a file 14 ...
Section 2.9: Filter logs 14 ...
Section 2.10: Log with changes inline 14 ..
Section 2.11: Log showing commited files 15 ...
Section 2.12: Show the contents of a single commit 15 ..
Section 2.13: Git Log Between Two Branches 16 ...
Section 2.14: One line showing commiter name and time since commit 16 ..

Chapter 3: Working with Remotes 17 ...
Section 3.1: Deleting a Remote Branch 17 ...
Section 3.2: Changing Git Remote URL 17 ...
Section 3.3: List Existing Remotes 17 ..
Section 3.4: Removing Local Copies of Deleted Remote Branches 17 ...
Section 3.5: Updating from Upstream Repository 18 ..
Section 3.6: ls-remote 18 ...
Section 3.7: Adding a New Remote Repository 18 ...
Section 3.8: Set Upstream on a New Branch 18 ...
Section 3.9: Getting Started 19 ..
Section 3.10: Renaming a Remote 19 ...
Section 3.11: Show information about a Specific Remote 20 ..
Section 3.12: Set the URL for a Specific Remote 20 ..
Section 3.13: Get the URL for a Specific Remote 20 ..
Section 3.14: Changing a Remote Repository 20 ..

Chapter 4: Staging 21 ..
Section 4.1: Staging All Changes to Files 21 ...
Section 4.2: Unstage a file that contains changes 21 ...
Section 4.3: Add changes by hunk 21 ..
Section 4.4: Interactive add 22 ..
Section 4.5: Show Staged Changes 22 ...
Section 4.6: Staging A Single File 23 ...

Section 4.7: Stage deleted files 23 ..

Chapter 5: Ignoring Files and Folders 24 ..
Section 5.1: Ignoring files and directories with a .gitignore file 24 ...
Section 5.2: Checking if a file is ignored 26 ...
Section 5.3: Exceptions in a .gitignore file 27 ...
Section 5.4: A global .gitignore file 27 ..
Section 5.5: Ignore files that have already been committed to a Git repository 27 ...
Section 5.6: Ignore files locally without committing ignore rules 28 ...
Section 5.7: Ignoring subsequent changes to a file (without removing it) 29 ..
Section 5.8: Ignoring a file in any directory 29 ..
Section 5.9: Prefilled .gitignore Templates 29 ...
Section 5.10: Ignoring files in subfolders (Multiple gitignore files) 30 ...
Section 5.11: Create an Empty Folder 31 ..
Section 5.12: Finding files ignored by .gitignore 31 ...
Section 5.13: Ignoring only part of a file [stub] 32 ..
Section 5.14: Ignoring changes in tracked files. [stub] 33 ..
Section 5.15: Clear already committed files, but included in .gitignore 34 ...

Chapter 6: Git Di 35 ...
Section 6.1: Show dierences in working branch 35 ...
Section 6.2: Show changes between two commits 35 ..
Section 6.3: Show dierences for staged files 35 ..
Section 6.4: Comparing branches 36 ...
Section 6.5: Show both staged and unstaged changes 36 ..
Section 6.6: Show dierences for a specific file or directory 36 ..
Section 6.7: Viewing a word-di for long lines 37 ...
Section 6.8: Show dierences between current version and last version 37 ...
Section 6.9: Produce a patch-compatible di 37 ..
Section 6.10: dierence between two commit or branch 38 ..
Section 6.11: Using meld to see all modifications in the working directory 38 ...
Section 6.12: Di UTF-16 encoded text and binary plist files 38 ..

Chapter 7: Undoing 40 ..
Section 7.1: Return to a previous commit 40 ...
Section 7.2: Undoing changes 40 ..
Section 7.3: Using reflog 41 ...
Section 7.4: Undoing merges 41 ...
Section 7.5: Revert some existing commits 43 ..
Section 7.6: Undo / Redo a series of commits 43 ...

Chapter 8: Merging 45 ..
Section 8.1: Automatic Merging 45 ..
Section 8.2: Finding all branches with no merged changes 45 ...
Section 8.3: Aborting a merge 45 ...
Section 8.4: Merge with a commit 45 ...
Section 8.5: Keep changes from only one side of a merge 45 ..
Section 8.6: Merge one branch into another 46 ..

Chapter 9: Submodules 47 ...
Section 9.1: Cloning a Git repository having submodules 47 ...
Section 9.2: Updating a Submodule 47 ..
Section 9.3: Adding a submodule 47 ..
Section 9.4: Setting a submodule to follow a branch 48 ..
Section 9.5: Moving a submodule 48 ..

Section 9.6: Removing a submodule 49 ...

Chapter 10: Committing 50 ...
Section 10.1: Stage and commit changes 50 ..
Section 10.2: Good commit messages 51 ..
Section 10.3: Amending a commit 52 ...
Section 10.4: Committing without opening an editor 53 ...
Section 10.5: Committing changes directly 53 ...
Section 10.6: Selecting which lines should be staged for committing 53 ..
Section 10.7: Creating an empty commit 54 ..
Section 10.8: Committing on behalf of someone else 54 ...
Section 10.9: GPG signing commits 55 ..
Section 10.10: Commiting changes in specific files 55 ...
Section 10.11: Committing at a specific date 55 ...
Section 10.12: Amending the time of a commit 56 ..
Section 10.13: Amending the author of a commit 56 ...

Chapter 11: Aliases 57 ..
Section 11.1: Simple aliases 57 ..
Section 11.2: List / search existing aliases 57 ...
Section 11.3: Advanced Aliases 57 ...
Section 11.4: Temporarily ignore tracked files 58 ..
Section 11.5: Show pretty log with branch graph 58 ...
Section 11.6: See which files are being ignored by your .gitignore configuration 59 ...
Section 11.7: Updating code while keeping a linear history 60 ...
Section 11.8: Unstage staged files 60 ..

Chapter 12: Rebasing 61 ..
Section 12.1: Local Branch Rebasing 61 ...
Section 12.2: Rebase: ours and theirs, local and remote 61 ...
Section 12.3: Interactive Rebase 63 ..
Section 12.4: Rebase down to the initial commit 64 ..
Section 12.5: Configuring autostash 64 ..
Section 12.6: Testing all commits during rebase 65 ..
Section 12.7: Rebasing before a code review 65 ...
Section 12.8: Aborting an Interactive Rebase 67 ...
Section 12.9: Setup git-pull for automatically perform a rebase instead of a merge 68 ...
Section 12.10: Pushing after a rebase 68 ..

Chapter 13: Configuration 69 ..
Section 13.1: Setting which editor to use 69 ..
Section 13.2: Auto correct typos 69 ...
Section 13.3: List and edit the current configuration 70 ..
Section 13.4: Username and email address 70 ..
Section 13.5: Multiple usernames and email address 70 ..
Section 13.6: Multiple git configurations 71 ..
Section 13.7: Configuring line endings 72 ...
Section 13.8: configuration for one command only 72 ...
Section 13.9: Setup a proxy 72 ...

Chapter 14: Branching 74 ..
Section 14.1: Creating and checking out new branches 74 ...
Section 14.2: Listing branches 75 ..
Section 14.3: Delete a remote branch 75 ..
Section 14.4: Quick switch to the previous branch 76 ...

Section 14.5: Check out a new branch tracking a remote branch 76 ...
Section 14.6: Delete a branch locally 76 ...
Section 14.7: Create an orphan branch (i.e. branch with no parent commit) 77 ...
Section 14.8: Rename a branch 77 ...
Section 14.9: Searching in branches 77 ..
Section 14.10: Push branch to remote 77 ..
Section 14.11: Move current branch HEAD to an arbitrary commit 78 ...

Chapter 15: Rev-List 79 ..
Section 15.1: List Commits in master but not in origin/master 79 ...

Chapter 16: Squashing 80 ..
Section 16.1: Squash Recent Commits Without Rebasing 80 ..
Section 16.2: Squashing Commit During Merge 80 ...
Section 16.3: Squashing Commits During a Rebase 80 ...
Section 16.4: Autosquashing and fixups 81 ..
Section 16.5: Autosquash: Committing code you want to squash during a rebase 82 ...

Chapter 17: Cherry Picking 83 ...
Section 17.1: Copying a commit from one branch to another 83 ..
Section 17.2: Copying a range of commits from one branch to another 83 ..
Section 17.3: Checking if a cherry-pick is required 84 ...
Section 17.4: Find commits yet to be applied to upstream 84 ...

Chapter 18: Recovering 85 ..
Section 18.1: Recovering from a reset 85 ...
Section 18.2: Recover from git stash 85 ...
Section 18.3: Recovering from a lost commit 86 ...
Section 18.4: Restore a deleted file after a commit 86 ...
Section 18.5: Restore file to a previous version 86 ..
Section 18.6: Recover a deleted branch 87 ..

Chapter 19: Git Clean 88 ...
Section 19.1: Clean Interactively 88 ...
Section 19.2: Forcefully remove untracked files 88 ...
Section 19.3: Clean Ignored Files 88 ..
Section 19.4: Clean All Untracked Directories 88 ...

Chapter 20: Using a .gitattributes file 90 ...
Section 20.1: Automatic Line Ending Normalization 90 ..
Section 20.2: Identify Binary Files 90 ..
Section 20.3: Prefilled .gitattribute Templates 90 ...
Section 20.4: Disable Line Ending Normalization 90 ..

Chapter 21: .mailmap file: Associating contributor and email aliases 91 ..
Section 21.1: Merge contributers by aliases to show commit count in shortlog 91 ...

Chapter 22: Analyzing types of workflows 92 ..
Section 22.1: Centralized Workflow 92 ...
Section 22.2: Gitflow Workflow 93 ..
Section 22.3: Feature Branch Workflow 95 ...
Section 22.4: GitHub Flow 95 ...
Section 22.5: Forking Workflow 96 ...

Chapter 23: Pulling 97 ...
Section 23.1: Pulling changes to a local repository 97 ..
Section 23.2: Updating with local changes 98 ...
Section 23.3: Pull, overwrite local 98 ...

Section 23.4: Pull code from remote 98 ...
Section 23.5: Keeping linear history when pulling 98 ...
Section 23.6: Pull, "permission denied" 99 ..

Chapter 24: Hooks 100 ...
Section 24.1: Pre-push 100 ...
Section 24.2: Verify Maven build (or other build system) before committing 101 ...
Section 24.3: Automatically forward certain pushes to other repositories 101 ...
Section 24.4: Commit-msg 102 ...
Section 24.5: Local hooks 102 ...
Section 24.6: Post-checkout 102 ...
Section 24.7: Post-commit 103 ..
Section 24.8: Post-receive 103 ..
Section 24.9: Pre-commit 103 ...
Section 24.10: Prepare-commit-msg 103 ...
Section 24.11: Pre-rebase 103 ..
Section 24.12: Pre-receive 104 ...
Section 24.13: Update 104 ..

Chapter 25: Cloning Repositories 105 ...
Section 25.1: Shallow Clone 105 ..
Section 25.2: Regular Clone 105 ...
Section 25.3: Clone a specific branch 105 ...
Section 25.4: Clone recursively 106 ..
Section 25.5: Clone using a proxy 106 ...

Chapter 26: Stashing 107 ...
Section 26.1: What is Stashing? 107 ..
Section 26.2: Create stash 108 ..
Section 26.3: Apply and remove stash 109 ..
Section 26.4: Apply stash without removing it 109 ...
Section 26.5: Show stash 109 ..
Section 26.6: Partial stash 109 ..
Section 26.7: List saved stashes 110 ..
Section 26.8: Move your work in progress to another branch 110 ...
Section 26.9: Remove stash 110 ...
Section 26.10: Apply part of a stash with checkout 110 ...
Section 26.11: Recovering earlier changes from stash 110 ..
Section 26.12: Interactive Stashing 111 ..
Section 26.13: Recover a dropped stash 111 ...

Chapter 27: Subtrees 113 ..
Section 27.1: Create, Pull, and Backport Subtree 113 ...

Chapter 28: Renaming 114 ...
Section 28.1: Rename Folders 114 ..
Section 28.2: rename a local and the remote branch 114 ..
Section 28.3: Renaming a local branch 114 ..

Chapter 29: Pushing 115 ...
Section 29.1: Push a specific object to a remote branch 115 ...
Section 29.2: Push 116 ...
Section 29.3: Force Pushing 117 ...
Section 29.4: Push tags 117 ...
Section 29.5: Changing the default push behavior 117 ..

Chapter 30: Internals 119 ..
Section 30.1: Repo 119 ...
Section 30.2: Objects 119 ..
Section 30.3: HEAD ref 119 ..
Section 30.4: Refs 119 ..
Section 30.5: Commit Object 120 ..
Section 30.6: Tree Object 121 ...
Section 30.7: Blob Object 121 ..
Section 30.8: Creating new Commits 122 ..
Section 30.9: Moving HEAD 122 ..
Section 30.10: Moving refs around 122 ..
Section 30.11: Creating new Refs 122 ..

Chapter 31: git-tfs 123 ...
Section 31.1: git-tfs clone 123 ...
Section 31.2: git-tfs clone from bare git repository 123 ...
Section 31.3: git-tfs install via Chocolatey 123 ...
Section 31.4: git-tfs Check In 123 ...
Section 31.5: git-tfs push 123 ...

Chapter 32: Empty directories in Git 124 ...
Section 32.1: Git doesn't track directories 124 ...

Chapter 33: git-svn 125 ...
Section 33.1: Cloning the SVN repository 125 ..
Section 33.2: Pushing local changes to SVN 125 ..
Section 33.3: Working locally 125 ...
Section 33.4: Getting the latest changes from SVN 126 ...
Section 33.5: Handling empty folders 126 ...

Chapter 34: Archive 127 ...
Section 34.1: Create an archive of git repository 127 ...
Section 34.2: Create an archive of git repository with directory prefix 127 ...
Section 34.3: Create archive of git repository based on specific branch, revision, tag or directory 128

Chapter 35: Rewriting history with filter-branch 129 ...
Section 35.1: Changing the author of commits 129 ..
Section 35.2: Setting git committer equal to commit author 129 ...

Chapter 36: Migrating to Git 130 ...
Section 36.1: SubGit 130 ...
Section 36.2: Migrate from SVN to Git using Atlassian conversion utility 130 ...
Section 36.3: Migrating Mercurial to Git 131 ..
Section 36.4: Migrate from Team Foundation Version Control (TFVC) to Git 131 ..
Section 36.5: Migrate from SVN to Git using svn2git 132 ...

Chapter 37: Show 133 ..
Section 37.1: Overview 133 ...

Chapter 38: Resolving merge conflicts 134 ...
Section 38.1: Manual Resolution 134 ...

Chapter 39: Bundles 135 ..
Section 39.1: Creating a git bundle on the local machine and using it on another 135 ..

Chapter 40: Display commit history graphically with Gitk 136 ...
Section 40.1: Display commit history for one file 136 ...
Section 40.2: Display all commits between two commits 136 ...
Section 40.3: Display commits since version tag 136 ...

Chapter 41: Bisecting/Finding faulty commits 137 ...
Section 41.1: Binary search (git bisect) 137 ..
Section 41.2: Semi-automatically find a faulty commit 137 ...

Chapter 42: Blaming 139 ...
Section 42.1: Only show certain lines 139 ...
Section 42.2: To find out who changed a file 139 ...
Section 42.3: Show the commit that last modified a line 140 ..
Section 42.4: Ignore whitespace-only changes 140 ...

Chapter 43: Git revisions syntax 141 ...
Section 43.1: Specifying revision by object name 141 ..
Section 43.2: Symbolic ref names: branches, tags, remote-tracking branches 141 ...
Section 43.3: The default revision: HEAD 141 ..
Section 43.4: Reflog references: <refname>@{<n>} 141 ...
Section 43.5: Reflog references: <refname>@{<date>} 142 ..
Section 43.6: Tracked / upstream branch: <branchname>@{upstream} 142 ..
Section 43.7: Commit ancestry chain: <rev>^, <rev>~<n>, etc 142 ...
Section 43.8: Dereferencing branches and tags: <rev>^0, <rev>^{<type>} 143 ..
Section 43.9: Youngest matching commit: <rev>^{/<text>}, :/<text> 143 ...

Chapter 44: Worktrees 145 ...
Section 44.1: Using a worktree 145 ...
Section 44.2: Moving a worktree 145 ...

Chapter 45: Git Remote 147 ..
Section 45.1: Display Remote Repositories 147 ...
Section 45.2: Change remote url of your Git repository 147 ...
Section 45.3: Remove a Remote Repository 148 ..
Section 45.4: Add a Remote Repository 148 ...
Section 45.5: Show more information about remote repository 148 ...
Section 45.6: Rename a Remote Repository 149 ...

Chapter 46: Git Large File Storage (LFS) 150 ...
Section 46.1: Declare certain file types to store externally 150 ...
Section 46.2: Set LFS config for all clones 150 ..
Section 46.3: Install LFS 150 ..

Chapter 47: Git Patch 151 ...
Section 47.1: Creating a patch 151 ..
Section 47.2: Applying patches 152 ..

Chapter 48: Git statistics 153 ..
Section 48.1: Lines of code per developer 153 ..
Section 48.2: Listing each branch and its last revision's date 153 ..
Section 48.3: Commits per developer 153 ...
Section 48.4: Commits per date 154 ..
Section 48.5: Total number of commits in a branch 154 ...
Section 48.6: List all commits in pretty format 154 ..
Section 48.7: Find All Local Git Repositories on Computer 154 ...
Section 48.8: Show the total number of commits per author 154 ..

Chapter 49: git send-email 155 ..
Section 49.1: Use git send-email with Gmail 155 ...
Section 49.2: Composing 155 ..
Section 49.3: Sending patches by mail 155 ...

Chapter 50: Git GUI Clients 157 ..

Section 50.1: gitk and git-gui 157 ..
Section 50.2: GitHub Desktop 158 ..
Section 50.3: Git Kraken 159 ...
Section 50.4: SourceTree 159 ..
Section 50.5: Git Extensions 159 ..
Section 50.6: SmartGit 159 ..

Chapter 51: Reflog - Restoring commits not shown in git log 160 ...
Section 51.1: Recovering from a bad rebase 160 ..

Chapter 52: TortoiseGit 161 ...
Section 52.1: Squash commits 161 ..
Section 52.2: Assume unchanged 162 ...
Section 52.3: Ignoring Files and Folders 164 ...
Section 52.4: Branching 165 ..

Chapter 53: External merge and ditools 167 ...
Section 53.1: Setting up KDi3 as merge tool 167 ..
Section 53.2: Setting up KDi3 as di tool 167 ...
Section 53.3: Setting up an IntelliJ IDE as merge tool (Windows) 167 ...
Section 53.4: Setting up an IntelliJ IDE as di tool (Windows) 167 ...
Section 53.5: Setting up Beyond Compare 168 ...

Chapter 54: Update Object Name in Reference 169 ..
Section 54.1: Update Object Name in Reference 169 ...

Chapter 55: Git Branch Name on Bash Ubuntu 170 ..
Section 55.1: Branch Name in terminal 170 ...

Chapter 56: Git Client-Side Hooks 171 ..
Section 56.1: Git pre-push hook 171 ..
Section 56.2: Installing a Hook 172 ...

Chapter 57: Git rerere 173 ..
Section 57.1: Enabling rerere 173 ..

Chapter 58: Change git repository name 174 ..
Section 58.1: Change local setting 174 ...

Chapter 59: Git Tagging 175 ..
Section 59.1: Listing all available tags 175 ...
Section 59.2: Create and push tag(s) in GIT 175 ...

Chapter 60: Tidying up your local and remote repository 177 ...
Section 60.1: Delete local branches that have been deleted on the remote 177 ..

Chapter 61: di-tree 178 ..
Section 61.1: See the files changed in a specific commit 178 ...
Section 61.2: Usage 178 ...
Section 61.3: Common di options 178 ..

Credits 179 ..

You may also like 186 ..

GoalKicker.com – Git® Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

https://goalkicker.com/GitBook

This Git® Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Git® group(s) or company(s) nor Stack Overflow. All

trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/GitBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 2

Chapter 1: Getting started with Git
Version Release Date
2.13 2017-05-10

2.12 2017-02-24

2.11.1 2017-02-02

2.11 2016-11-29

2.10.2 2016-10-28

2.10 2016-09-02

2.9 2016-06-13

2.8 2016-03-28

2.7 2015-10-04

2.6 2015-09-28

2.5 2015-07-27

2.4 2015-04-30

2.3 2015-02-05

2.2 2014-11-26

2.1 2014-08-16

2.0 2014-05-28

1.9 2014-02-14

1.8.3 2013-05-24

1.8 2012-10-21

1.7.10 2012-04-06

1.7 2010-02-13

1.6.5 2009-10-10

1.6.3 2009-05-07

1.6 2008-08-17

1.5.3 2007-09-02

1.5 2007-02-14

1.4 2006-06-10

1.3 2006-04-18

1.2 2006-02-12

1.1 2006-01-08

1.0 2005-12-21

0.99 2005-07-11

Section 1.1: Create your first repository, then add and commit
files
At the command line, first verify that you have Git installed:

On all operating systems:

git --version

On UNIX-like operating systems:

https://git.kernel.org/pub/scm/git/git.git/plain/Documentation/RelNotes/2.13.0.txt
https://git.kernel.org/pub/scm/git/git.git/plain/Documentation/RelNotes/2.12.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.11.1.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.11.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.10.2.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.10.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.9.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.8.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.7.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.6.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.5.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.4.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.3.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.2.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.1.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.0.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.9.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.8.3.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.8.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.7.10.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.7.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.6.5.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.6.3.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.6.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.5.3.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.5.0.txt
https://github.com/git/git/archive/v1.4.0.tar.gz
https://github.com/git/git/archive/v1.3.0.tar.gz
https://github.com/git/git/archive/v1.2.0.tar.gz
https://github.com/git/git/archive/v1.1.0.tar.gz
https://github.com/git/git/archive/v1.0.0.tar.gz
https://github.com/git/git/archive/v0.99.tar.gz
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 3

which git

If nothing is returned, or the command is not recognized, you may have to install Git on your system by
downloading and running the installer. See the Git homepage for exceptionally clear and easy installation
instructions.

After installing Git, configure your username and email address. Do this before making a commit.

Once Git is installed, navigate to the directory you want to place under version control and create an empty Git
repository:

git init

This creates a hidden folder, .git, which contains the plumbing needed for Git to work.

Next, check what files Git will add to your new repository; this step is worth special care:

git status

Review the resulting list of files; you can tell Git which of the files to place into version control (avoid adding files
with confidential information such as passwords, or files that just clutter the repo):

git add <file/directory name #1> <file/directory name #2> < ... >

If all files in the list should be shared with everyone who has access to the repository, a single command will add
everything in your current directory and its subdirectories:

git add .

This will "stage" all files to be added to version control, preparing them to be committed in your first commit.

For files that you want never under version control, create and populate a file named .gitignore before running
the add command.

Commit all the files that have been added, along with a commit message:

git commit -m "Initial commit"

This creates a new commit with the given message. A commit is like a save or snapshot of your entire project. You
can now push, or upload, it to a remote repository, and later you can jump back to it if necessary.
If you omit the -m parameter, your default editor will open and you can edit and save the commit message there.

Adding a remote

To add a new remote, use the git remote add command on the terminal, in the directory your repository is stored
at.

The git remote add command takes two arguments:

A remote name, for example, origin1.
A remote URL, for example, https://<your-git-service-address>/user/repo.git2.

 git remote add origin https://<your-git-service-address>/owner/repository.git

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 4

NOTE: Before adding the remote you have to create the required repository in your git service, You'll be able to
push/pull commits after adding your remote.

Section 1.2: Clone a repository
The git clone command is used to copy an existing Git repository from a server to the local machine.

For example, to clone a GitHub project:

cd <path where you would like the clone to create a directory>
git clone https://github.com/username/projectname.git

To clone a BitBucket project:

cd <path where you would like the clone to create a directory>
git clone https://yourusername@bitbucket.org/username/projectname.git

This creates a directory called projectname on the local machine, containing all the files in the remote Git
repository. This includes source files for the project, as well as a .git sub-directory which contains the entire
history and configuration for the project.

To specify a different name of the directory, e.g. MyFolder:

git clone https://github.com/username/projectname.git MyFolder

Or to clone in the current directory:

git clone https://github.com/username/projectname.git .

Note:

When cloning to a specified directory, the directory must be empty or non-existent.1.

You can also use the ssh version of the command:2.

git clone git@github.com:username/projectname.git

The https version and the ssh version are equivalent. However, some hosting services such as GitHub recommend
that you use https rather than ssh.

Section 1.3: Sharing code
To share your code you create a repository on a remote server to which you will copy your local repository.

To minimize the use of space on the remote server you create a bare repository: one which has only the .git
objects and doesn't create a working copy in the filesystem. As a bonus you set this remote as an upstream server
to easily share updates with other programmers.

On the remote server:

git init --bare /path/to/repo.git

On the local machine:

https://help.github.com/articles/set-up-git/#next-steps-authenticating-with-github-from-git
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 5

git remote add origin ssh://username@server:/path/to/repo.git

(Note that ssh: is just one possible way of accessing the remote repository.)

Now copy your local repository to the remote:

git push --set-upstream origin master

Adding --set-upstream (or -u) created an upstream (tracking) reference which is used by argument-less Git
commands, e.g. git pull.

Section 1.4: Setting your user name and email
You need to set who you are *before* creating any commit. That will allow commits to have the
right author name and email associated to them.

It has nothing to do with authentication when pushing to a remote repository (e.g. when pushing to a remote
repository using your GitHub, BitBucket, or GitLab account)

To declare that identity for all repositories, use git config --global
This will store the setting in your user's .gitconfig file: e.g. $HOME/.gitconfig or for Windows,
%USERPROFILE%\.gitconfig.

git config --global user.name "Your Name"
git config --global user.email mail@example.com

To declare an identity for a single repository, use git config inside a repo.
This will store the setting inside the individual repository, in the file $GIT_DIR/config. e.g.
/path/to/your/repo/.git/config.

cd /path/to/my/repo
git config user.name "Your Login At Work"
git config user.email mail_at_work@example.com

Settings stored in a repository's config file will take precedence over the global config when you use that repository.

Tips: if you have different identities (one for open-source project, one at work, one for private repos, ...), and you
don't want to forget to set the right one for each different repos you are working on:

Remove a global identity

git config --global --remove-section user.name
git config --global --remove-section user.email

Version ≥ 2.8

To force git to look for your identity only within a repository's settings, not in the global config:

 git config --global user.useConfigOnly true

That way, if you forget to set your user.name and user.email for a given repository and try to make a commit, you
will see:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 6

no name was given and auto-detection is disabled
no email was given and auto-detection is disabled

Section 1.5: Setting up the upstream remote
If you have cloned a fork (e.g. an open source project on Github) you may not have push access to the upstream
repository, so you need both your fork but be able to fetch the upstream repository.

First check the remote names:

$ git remote -v
origin https://github.com/myusername/repo.git (fetch)
origin https://github.com/myusername/repo.git (push)
upstream # this line may or may not be here

If upstream is there already (it is on some Git versions) you need to set the URL (currently it's empty):

$ git remote set-url upstream https://github.com/projectusername/repo.git

If the upstream is not there, or if you also want to add a friend/colleague's fork (currently they do not exist):

$ git remote add upstream https://github.com/projectusername/repo.git
$ git remote add dave https://github.com/dave/repo.git

Section 1.6: Learning about a command
To get more information about any git command – i.e. details about what the command does, available options and
other documentation – use the --help option or the help command.

For example, to get all available information about the git diff command, use:

git diff --help
git help diff

Similarly, to get all available information about the status command, use:

git status --help
git help status

If you only want a quick help showing you the meaning of the most used command line flags, use -h:

git checkout -h

Section 1.7: Set up SSH for Git
If you are using Windows open Git Bash. If you are using Mac or Linux open your Terminal.

Before you generate an SSH key, you can check to see if you have any existing SSH keys.

List the contents of your ~/.ssh directory:

$ ls -al ~/.ssh
Lists all the files in your ~/.ssh directory

https://git-for-windows.github.io/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 7

Check the directory listing to see if you already have a public SSH key. By default the filenames of the public keys
are one of the following:

id_dsa.pub
id_ecdsa.pub
id_ed25519.pub
id_rsa.pub

If you see an existing public and private key pair listed that you would like to use on your Bitbucket, GitHub (or
similar) account you can copy the contents of the id_*.pub file.

If not, you can create a new public and private key pair with the following command:

$ ssh-keygen

Press the Enter or Return key to accept the default location. Enter and re-enter a passphrase when prompted, or
leave it empty.

Ensure your SSH key is added to the ssh-agent. Start the ssh-agent in the background if it's not already running:

$ eval "$(ssh-agent -s)"

Add you SSH key to the ssh-agent. Notice that you'll need te replace id_rsa in the command with the name of your
private key file:

$ ssh-add ~/.ssh/id_rsa

If you want to change the upstream of an existing repository from HTTPS to SSH you can run the following
command:

$ git remote set-url origin ssh://git@bitbucket.server.com:7999/projects/your_project.git

In order to clone a new repository over SSH you can run the following command:

$ git clone ssh://git@bitbucket.server.com:7999/projects/your_project.git

Section 1.8: Git Installation
Let’s get into using some Git. First things first—you have to install it. You can get it a number of ways; the two major
ones are to install it from source or to install an existing package for your platform.

Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most recent version. Each version of
Git tends to include useful UI enhancements, so getting the latest version is often the best route if you feel
comfortable compiling software from source. It is also the case that many Linux distributions contain very old
packages; so unless you’re on a very up-to-date distro or are using backports, installing from source may be the
best bet.

To install Git, you need to have the following libraries that Git depends on: curl, zlib, openssl, expat, and libiconv.
For example, if you’re on a system that has yum (such as Fedora) or apt-get (such as a Debian based system), you
can use one of these commands to install all of the dependencies:

$ yum install curl-devel expat-devel gettext-devel \

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 8

 openssl-devel zlib-devel

$ apt-get install libcurl4-gnutls-dev libexpat1-dev gettext \
 libz-dev libssl-dev

When you have all the necessary dependencies, you can go ahead and grab the latest snapshot from the Git web
site:

http://git-scm.com/download Then, compile and install:

$ tar -zxf git-1.7.2.2.tar.gz
$ cd git-1.7.2.2
$ make prefix=/usr/local all
$ sudo make prefix=/usr/local install

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through the basic package-
management tool that comes with your distribution. If you’re on Fedora, you can use yum:

$ yum install git

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

$ apt-get install git

Installing on Mac

There are three easy ways to install Git on a Mac. The easiest is to use the graphical Git installer, which you can
download from the SourceForge page.

http://sourceforge.net/projects/git-osx-installer/

Figure 1-7. Git OS X installer. The other major way is to install Git via MacPorts (http://www.macports.org). If you
have MacPorts installed, install Git via

$ sudo port install git +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in case you ever have to use Git with
Subversion repositories (see Chapter 8).

Homebrew (http://brew.sh/) is another alternative to install Git. If you have Homebrew installed, install Git via

$ brew install git

Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier installation procedures. Simply
download the installer exe file from the GitHub page, and run it:

http://msysgit.github.io

http://git-scm.com/download
http://sourceforge.net/projects/git-osx-installer/
http://www.macports.org)
http://brew.sh/)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 9

After it’s installed, you have both a command-line version (including an SSH client that will come in handy later) and
the standard GUI.

Note on Windows usage: you should use Git with the provided msysGit shell (Unix style), it allows to use the complex
lines of command given in this book. If you need, for some reason, to use the native Windows shell / command line
console, you have to use double quotes instead of single quotes (for parameters with spaces in them) and you must
quote the parameters ending with the circumflex accent (^) if they are last on the line, as it is a continuation symbol
in Windows.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 10

Chapter 2: Browsing the history
Parameter Explanation

-q, --quiet Quiet, suppresses diff output

--source Shows source of commit

--use-mailmap Use mail map file (changes user info for committing user)

--decorate[=...] Decorate options

--L <n,m:file> Show log for specific range of lines in a file, counting from 1. Starts from line n, goes to line
m. Also shows diff.

--show-signature Display signatures of signed commits

-i, --regexp-ignore-case Match the regular expression limiting patterns without regard to letter case

Section 2.1: "Regular" Git Log
git log

will display all your commits with the author and hash. This will be shown over multiple lines per commit. (If you
wish to show a single line per commit, look at onelineing). Use the q key to exit the log.

By default, with no arguments, git log lists the commits made in that repository in reverse chronological
order – that is, the most recent commits show up first. As you can see, this command lists each commit
with its SHA-1 checksum, the author’s name and email, the date written, and the commit message. -
source

Example (from Free Code Camp repository):

commit 87ef97f59e2a2f4dc425982f76f14a57d0900bcf
Merge: e50ff0d eb8b729
Author: Brian
Date: Thu Mar 24 15:52:07 2016 -0700

Merge pull request #7724 from BKinahan/fix/where-art-thou

Fix 'its' typo in Where Art Thou description

commit eb8b7298d516ea20a4aadb9797c7b6fd5af27ea5
Author: BKinahan
Date: Thu Mar 24 21:11:36 2016 +0000

Fix 'its' typo in Where Art Thou description

commit e50ff0d249705f41f55cd435f317dcfd02590ee7
Merge: 6b01875 2652d04
Author: Mrugesh Mohapatra
Date: Thu Mar 24 14:26:04 2016 +0530

Merge pull request #7718 from deathsythe47/fix/unnecessary-comma

Remove unnecessary comma from CONTRIBUTING.md

If you wish to limit your command to last n commits log you can simply pass a parameter. For example, if you wish
to list last 2 commits logs

https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
https://github.com/FreeCodeCamp/FreeCodeCamp
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 11

git log -2

Section 2.2: Prettier log
To see the log in a prettier graph-like structure use:

git log --decorate --oneline --graph

sample output :

* e0c1cea (HEAD -> maint, tag: v2.9.3, origin/maint) Git 2.9.3
* 9b601ea Merge branch 'jk/difftool-in-subdir' into maint
|\
| * 32b8c58 difftool: use Git::* functions instead of passing around state
| * 98f917e difftool: avoid $GIT_DIR and $GIT_WORK_TREE
| * 9ec26e7 difftool: fix argument handling in subdirs
* | f4fd627 Merge branch 'jk/reset-ident-time-per-commit' into maint
...

Since it's a pretty big command, you can assign an alias:

git config --global alias.lol "log --decorate --oneline --graph"

To use the alias version:

history of current branch :
git lol

combined history of active branch (HEAD), develop and origin/master branches :
git lol HEAD develop origin/master

combined history of everything in your repo :
git lol --all

Section 2.3: Colorize Logs
git log --graph --pretty=format:'%C(red)%h%Creset -%C(yellow)%d%Creset %s %C(green)(%cr)
%C(yellow)<%an>%Creset'

The format option allows you to specify your own log output format:

Parameter Details
%C(color_name) option colors the output that comes after it

%h or %H abbreviates commit hash (use %H for complete hash)
%Creset resets color to default terminal color
%d ref names
%s subject [commit message]
%cr committer date, relative to current date
%an author name

Section 2.4: Oneline log
git log --oneline

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 12

will show all of your commits with only the first part of the hash and the commit message. Each commit will be in a
single line, as the oneline flag suggests.

The oneline option prints each commit on a single line, which is useful if you’re looking at a lot of
commits. - source

Example (from Free Code Camp repository, with the same section of code from the other example):

87ef97f Merge pull request #7724 from BKinahan/fix/where-art-thou
eb8b729 Fix 'its' typo in Where Art Thou description
e50ff0d Merge pull request #7718 from deathsythe47/fix/unnecessary-comma
2652d04 Remove unnecessary comma from CONTRIBUTING.md
6b01875 Merge pull request #7667 from zerkms/patch-1
766f088 Fixed assignment operator terminology
d1e2468 Merge pull request #7690 from BKinahan/fix/unsubscribe-crash
bed9de2 Merge pull request #7657 from Rafase282/fix/

If you wish to limit you command to last n commits log you can simply pass a parameter. For example, if you wish
to list last 2 commits logs

git log -2 --oneline

Section 2.5: Log search
git log -S"#define SAMPLES"

Searches for addition or removal of specific string or the string matching provided REGEXP. In this case we're
looking for addition/removal of the string #define SAMPLES. For example:

+#define SAMPLES 100000

or

-#define SAMPLES 100000

git log -G"#define SAMPLES"

Searches for changes in lines containing specific string or the string matching provided REGEXP. For example:

-#define SAMPLES 100000
+#define SAMPLES 100000000

Section 2.6: List all contributions grouped by author name
git shortlog summarizes git log and groups by author

If no parameters are given, a list of all commits made per committer will be shown in chronological order.

$ git shortlog
Committer 1 (<number_of_commits>):
 Commit Message 1
 Commit Message 2

https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
https://github.com/FreeCodeCamp/FreeCodeCamp
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 13

 ...
Committer 2 (<number_of_commits>):
 Commit Message 1
 Commit Message 2
 ...

To simply see the number of commits and suppress the commit description, pass in the summary option:

-s

--summary

$ git shortlog -s
<number_of_commits> Committer 1
<number_of_commits> Committer 2

To sort the output by number of commits instead of alphabetically by committer name, pass in the numbered
option:

-n

--numbered

To add the email of a committer, add the email option:

-e

--email

A custom format option can also be provided if you want to display information other than the commit subject:

--format

This can be any string accepted by the --format option of git log.

See Colorizing Logs above for more information on this.

Section 2.7: Searching commit string in git log
Searching git log using some string in log:

git log [options] --grep "search_string"

Example:

git log --all --grep "removed file"

Will search for removed file string in all logs in all branches.

Starting from git 2.4+, the search can be inverted using the --invert-grep option.

Example:

git log --grep="add file" --invert-grep

Will show all commits that do not contain add file.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 14

Section 2.8: Log for a range of lines within a file
$ git log -L 1,20:index.html
commit 6a57fde739de66293231f6204cbd8b2feca3a869
Author: John Doe <john@doe.com>
Date: Tue Mar 22 16:33:42 2016 -0500

 commit message

diff --git a/index.html b/index.html
--- a/index.html
+++ b/index.html
@@ -1,17 +1,20 @@
 <!DOCTYPE HTML>
 <html>
- <head>
- <meta charset="utf-8">
+
+<head>
+ <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">

Section 2.9: Filter logs
git log --after '3 days ago'

Specific dates work too:

git log --after 2016-05-01

As with other commands and flags that accept a date parameter, the allowed date format is as supported by GNU
date (highly flexible).

An alias to --after is --since.

Flags exist for the converse too: --before and --until.

You can also filter logs by author. e.g.

git log --author=author

Section 2.10: Log with changes inline
To see the log with changes inline, use the -p or --patch options.

git log --patch

Example (from Trello Scientist repository)

ommit 8ea1452aca481a837d9504f1b2c77ad013367d25
Author: Raymond Chou <info@raychou.io>
Date: Wed Mar 2 10:35:25 2016 -0800

 fix readme error link

https://github.com/trello/scientist
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 15

diff --git a/README.md b/README.md
index 1120a00..9bef0ce 100644
--- a/README.md
+++ b/README.md
@@ -134,7 +134,7 @@ the control function threw, but *after* testing the other functions and
readying
 the logging. The criteria for matching errors is based on the constructor and
 message.

-You can find this full example at [examples/errors.js](examples/error.js).
+You can find this full example at examples/errors.js.

 ## Asynchronous behaviors

commit d3178a22716cc35b6a2bdd679a7ec24bc8c63ffa
:

Section 2.11: Log showing commited files
git log --stat

Example:

commit 4ded994d7fc501451fa6e233361887a2365b91d1
Author: Manassés Souza <manasses.inatel@gmail.com>
Date: Mon Jun 6 21:32:30 2016 -0300

 MercadoLibre java-sdk dependency

 mltracking-poc/.gitignore | 1 +
 mltracking-poc/pom.xml | 14 ++++++++++++--
 2 files changed, 13 insertions(+), 2 deletions(-)

commit 506fff56190f75bc051248770fb0bcd976e3f9a5
Author: Manassés Souza <manasses.inatel@gmail.com>
Date: Sat Jun 4 12:35:16 2016 -0300

 [manasses] generated by SpringBoot initializr

 .gitignore | 42
++++++++++++
 mltracking-poc/mvnw | 233
+++
 mltracking-poc/mvnw.cmd | 145
+++++++++++++++++++++++++++++++++++++++
 mltracking-poc/pom.xml | 74
++++++++++++++++++++
 mltracking-poc/src/main/java/br/com/mls/mltracking/MltrackingPocApplication.java | 12 ++++
 mltracking-poc/src/main/resources/application.properties | 0
 mltracking-poc/src/test/java/br/com/mls/mltracking/MltrackingPocApplicationTests.java | 18 +++++
 7 files changed, 524 insertions(+)

Section 2.12: Show the contents of a single commit
Using git show we can view a single commit

git show 48c83b3

https://git-scm.com/docs/git-show
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 16

git show 48c83b3690dfc7b0e622fd220f8f37c26a77c934

Example

commit 48c83b3690dfc7b0e622fd220f8f37c26a77c934
Author: Matt Clark <mrclark32493@gmail.com>
Date: Wed May 4 18:26:40 2016 -0400

 The commit message will be shown here.

diff --git a/src/main/java/org/jdm/api/jenkins/BuildStatus.java
b/src/main/java/org/jdm/api/jenkins/BuildStatus.java
index 0b57e4a..fa8e6a5 100755
--- a/src/main/java/org/jdm/api/jenkins/BuildStatus.java
+++ b/src/main/java/org/jdm/api/jenkins/BuildStatus.java
@@ -50,7 +50,7 @@ public enum BuildStatus {

 colorMap.put(BuildStatus.UNSTABLE, Color.decode("#FFFF55"));
- colorMap.put(BuildStatus.SUCCESS, Color.decode("#55FF55"));
+ colorMap.put(BuildStatus.SUCCESS, Color.decode("#33CC33"));
 colorMap.put(BuildStatus.BUILDING, Color.decode("#5555FF"));

Section 2.13: Git Log Between Two Branches
git log master..foo will show the commits that are on foo and not on master. Helpful for seeing what commits
you've added since branching!

Section 2.14: One line showing commiter name and time since
commit
tree = log --oneline --decorate --source --pretty=format:'"%Cblue %h %Cgreen %ar %Cblue %an
%C(yellow) %d %Creset %s"' --all --graph

example

* 40554ac 3 months ago Alexander Zolotov Merge pull request #95 from
gmandnepr/external_plugins
|\
| * e509f61 3 months ago Ievgen Degtiarenko Documenting new property
| * 46d4cb6 3 months ago Ievgen Degtiarenko Running idea with external plugins
| * 6253da4 3 months ago Ievgen Degtiarenko Resolve external plugin classes
| * 9fdb4e7 3 months ago Ievgen Degtiarenko Keep original artifact name as this may be
important for intellij
| * 22e82e4 3 months ago Ievgen Degtiarenko Declaring external plugin in intellij section
|/
* bc3d2cb 3 months ago Alexander Zolotov Ignore DTD in plugin.xml

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 17

Chapter 3: Working with Remotes
Section 3.1: Deleting a Remote Branch
To delete a remote branch in Git:

git push [remote-name] --delete [branch-name]

or

git push [remote-name] :[branch-name]

Section 3.2: Changing Git Remote URL
Check existing remote

git remote -v
origin https://github.com/username/repo.git (fetch)
origin https://github.com/usernam/repo.git (push)

Changing repository URL

git remote set-url origin https://github.com/username/repo2.git
Change the 'origin' remote's URL

Verify new remote URL

git remote -v
origin https://github.com/username/repo2.git (fetch)
origin https://github.com/username/repo2.git (push)

Section 3.3: List Existing Remotes
List all the existing remotes associated with this repository:

git remote

List all the existing remotes associated with this repository in detail including the fetch and push URLs:

git remote --verbose

or simply

git remote -v

Section 3.4: Removing Local Copies of Deleted Remote
Branches
If a remote branch has been deleted, your local repository has to be told to prune the reference to it.

To prune deleted branches from a specific remote:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 18

git fetch [remote-name] --prune

To prune deleted branches from all remotes:

git fetch --all --prune

Section 3.5: Updating from Upstream Repository
Assuming you set the upstream (as in the "setting an upstream repository")

git fetch remote-name
git merge remote-name/branch-name

The pull command combines a fetch and a merge.

git pull

The pull with --rebase flag command combines a fetch and a rebase instead of merge.

git pull --rebase remote-name branch-name

Section 3.6: ls-remote
git ls-remote is one unique command allowing you to query a remote repo without having to clone/fetch it first.

It will list refs/heads and refs/tags of said remote repo.

You will see sometimes refs/tags/v0.1.6 and refs/tags/v0.1.6^{}: the ^{} to list the dereferenced annotated
tag (ie the commit that tag is pointing to)

Since git 2.8 (March 2016), you can avoid that double entry for a tag, and list directly those dereferenced tags with:

git ls-remote --ref

It can also help resolve the actual url used by a remote repo when you have "url.<base>.insteadOf" config setting.
If git remote --get-url <aremotename> returns https://server.com/user/repo, and you have set git config
url.ssh://git@server.com:.insteadOf https://server.com/:

git ls-remote --get-url <aremotename>
ssh://git@server.com:user/repo

Section 3.7: Adding a New Remote Repository
git remote add upstream git-repository-url

Adds remote git repository represented by git-repository-url as new remote named upstream to the git
repository

Section 3.8: Set Upstream on a New Branch
You can create a new branch and switch to it using

git checkout -b AP-57

https://git-scm.com/docs/git-ls-remote
https://server.com/user/repo
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 19

After you use git checkout to create a new branch, you will need to set that upstream origin to push to using

git push --set-upstream origin AP-57

After that, you can use git push while you are on that branch.

Section 3.9: Getting Started
Syntax for pushing to a remote branch

git push <remote_name> <branch_name>

Example

git push origin master

Section 3.10: Renaming a Remote
To rename remote, use command git remote rename

The git remote rename command takes two arguments:

An existing remote name, for example : origin
A new name for the remote, for example : destination

Get existing remote name

git remote
origin

Check existing remote with URL

git remote -v
origin https://github.com/username/repo.git (fetch)
origin https://github.com/usernam/repo.git (push)

Rename remote

 git remote rename origin destination
 # Change remote name from 'origin' to 'destination'

Verify new name

git remote -v
destination https://github.com/username/repo.git (fetch)
destination https://github.com/usernam/repo.git (push)

=== Posible Errors ===

Could not rename config section 'remote.[old name]' to 'remote.[new name]'1.

This error means that the remote you tried the old remote name (origin) doesn't exist.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 20

Remote [new name] already exists.2.

Error message is self explanatory.

Section 3.11: Show information about a Specific Remote
Output some information about a known remote: origin

git remote show origin

Print just the remote's URL:

git config --get remote.origin.url

With 2.7+, it is also possible to do, which is arguably better than the above one that uses the config command.

git remote get-url origin

Section 3.12: Set the URL for a Specific Remote
You can change the url of an existing remote by the command

git remote set-url remote-name url

Section 3.13: Get the URL for a Specific Remote
You can obtain the url for an existing remote by using the command

git remote get-url <name>

By default, this will be

git remote get-url origin

Section 3.14: Changing a Remote Repository
To change the URL of the repository you want your remote to point to, you can use the set-url option, like so:

git remote set-url <remote_name> <remote_repository_url>

Example:

git remote set-url heroku https://git.heroku.com/fictional-remote-repository.git

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 21

Chapter 4: Staging
Section 4.1: Staging All Changes to Files
git add -A
Version ≥ 2.0

git add .

In version 2.x, git add . will stage all changes to files in the current directory and all its subdirectories. However, in
1.x it will only stage new and modified files, not deleted files.

Use git add -A, or its equivalent command git add --all, to stage all changes to files in any version of git.

Section 4.2: Unstage a file that contains changes
git reset <filePath>

Section 4.3: Add changes by hunk
You can see what "hunks" of work would be staged for commit using the patch flag:

git add -p

or

git add --patch

This opens an interactive prompt that allows you to look at the diffs and let you decide whether you want to include
them or not.

Stage this hunk [y,n,q,a,d,/,s,e,?]?

 y stage this hunk for the next commit
 n do not stage this hunk for the next commit
 q quit; do not stage this hunk or any of the remaining hunks
 a stage this hunk and all later hunks in the file
 d do not stage this hunk or any of the later hunks in the file
 g select a hunk to go to
 / search for a hunk matching the given regex
 j leave this hunk undecided, see next undecided hunk
 J leave this hunk undecided, see next hunk
 k leave this hunk undecided, see previous undecided hunk
 K leave this hunk undecided, see previous hunk
 s split the current hunk into smaller hunks
 e manually edit the current hunk
 ? print hunk help

This makes it easy to catch changes which you do not want to commit.

You can also open this via git add --interactive and selecting p.

http://stackoverflow.com/a/26039014/3345375
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 22

Section 4.4: Interactive add
git add -i (or --interactive) will give you an interactive interface where you can edit the index, to prepare what
you want to have in the next commit. You can add and remove changes to whole files, add untracked files and
remove files from being tracked, but also select subsection of changes to put in the index, by selecting chunks of
changes to be added, splitting those chunks, or even editing the diff. Many graphical commit tools for Git (like e.g.
git gui) include such feature; this might be easier to use than the command line version.

It is very useful (1) if you have entangled changes in the working directory that you want to put in separate commits,
and not all in one single commit (2) if you are in the middle of an interactive rebase and want to split too large
commit.

$ git add -i
 staged unstaged path
 1: unchanged +4/-4 index.js
 2: +1/-0 nothing package.json

*** Commands ***
 1: status 2: update 3: revert 4: add untracked
 5: patch 6: diff 7: quit 8: help
What now>

The top half of this output shows the current state of the index broken up into staged and unstaged columns:

index.js has had 4 lines added and 4 lines removed. It is currently not staged, as the current status reports1.
"unchanged." When this file becomes staged, the +4/-4 bit will be transferred to the staged column and the
unstaged column will read "nothing."
package.json has had one line added and has been staged. There are no further changes since it has been2.
staged as indicated by the "nothing" line under the unstaged column.

The bottom half shows what you can do. Either enter a number (1-8) or a letter (s, u, r, a, p, d, q, h).

status shows output identical to the top part of the output above.

update allows you to make further changes to the staged commits with additional syntax.

revert will revert the staged commit information back to HEAD.

add untracked allows you to add filepaths previously untracked by version control.

patch allows for one path to be selected out of an output similar to status for further analysis.

diff displays what will be committed.

quit exits the command.

help presents further help on using this command.

Section 4.5: Show Staged Changes
To display the hunks that are staged for commit:

git diff --cached

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 23

Section 4.6: Staging A Single File
To stage a file for committing, run

git add <filename>

Section 4.7: Stage deleted files
git rm filename

To delete the file from git without removing it from disk, use the --cached flag

git rm --cached filename

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 24

Chapter 5: Ignoring Files and Folders
This topic illustrates how to avoid adding unwanted files (or file changes) in a Git repo. There are several ways
(global or local .gitignore, .git/exclude, git update-index --assume-unchanged, and git update-index --
skip-tree), but keep in mind Git is managing content, which means: ignoring actually ignores a folder content (i.e.
files). An empty folder would be ignored by default, since it cannot be added anyway.

Section 5.1: Ignoring files and directories with a .gitignore file
You can make Git ignore certain files and directories — that is, exclude them from being tracked by Git — by
creating one or more .gitignore files in your repository.

In software projects, .gitignore typically contains a listing of files and/or directories that are generated during the
build process or at runtime. Entries in the .gitignore file may include names or paths pointing to:

temporary resources e.g. caches, log files, compiled code, etc.1.
local configuration files that should not be shared with other developers2.
files containing secret information, such as login passwords, keys and credentials3.

When created in the top level directory, the rules will apply recursively to all files and sub-directories throughout
the entire repository. When created in a sub-directory, the rules will apply to that specific directory and its sub-
directories.

When a file or directory is ignored, it will not be:

tracked by Git1.
reported by commands such as git status or git diff2.
staged with commands such as git add -A3.

In the unusual case that you need to ignore tracked files, special care should be taken. See: Ignore files that have
already been committed to a Git repository.

Examples

Here are some generic examples of rules in a .gitignore file, based on glob file patterns:

Lines starting with `#` are comments.

Ignore files called 'file.ext'
file.ext

Comments can't be on the same line as rules!
The following line ignores files called 'file.ext # not a comment'
file.ext # not a comment

Ignoring files with full path.
This matches files in the root directory and subdirectories too.
i.e. otherfile.ext will be ignored anywhere on the tree.
dir/otherdir/file.ext
otherfile.ext

Ignoring directories
Both the directory itself and its contents will be ignored.
bin/
gen/

https://git-scm.com/docs/gitignore
https://en.wikipedia.org/wiki/Glob_(programming)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 25

Glob pattern can also be used here to ignore paths with certain characters.
For example, the below rule will match both build/ and Build/
[bB]uild/

Without the trailing slash, the rule will match a file and/or
a directory, so the following would ignore both a file named `gen`
and a directory named `gen`, as well as any contents of that directory
bin
gen

Ignoring files by extension
All files with these extensions will be ignored in
this directory and all its sub-directories.
*.apk
*.class

It's possible to combine both forms to ignore files with certain
extensions in certain directories. The following rules would be
redundant with generic rules defined above.
java/*.apk
gen/*.class

To ignore files only at the top level directory, but not in its
subdirectories, prefix the rule with a `/`
/*.apk
/*.class

To ignore any directories named DirectoryA
in any depth use ** before DirectoryA
Do not forget the last /,
Otherwise it will ignore all files named DirectoryA, rather than directories
**/DirectoryA/
This would ignore
DirectoryA/
DirectoryB/DirectoryA/
DirectoryC/DirectoryB/DirectoryA/
It would not ignore a file named DirectoryA, at any level

To ignore any directory named DirectoryB within a
directory named DirectoryA with any number of
directories in between, use ** between the directories
DirectoryA/**/DirectoryB/
This would ignore
DirectoryA/DirectoryB/
DirectoryA/DirectoryQ/DirectoryB/
DirectoryA/DirectoryQ/DirectoryW/DirectoryB/

To ignore a set of files, wildcards can be used, as can be seen above.
A sole '*' will ignore everything in your folder, including your .gitignore file.
To exclude specific files when using wildcards, negate them.
So they are excluded from the ignore list:
!.gitignore

Use the backslash as escape character to ignore files with a hash (#)
(supported since 1.6.2.1)
\#*#

Most .gitignore files are standard across various languages, so to get started, here is set of sample .gitignore
files listed by language from which to clone or copy/modify into your project. Alternatively, for a fresh project you
may consider auto-generating a starter file using an online tool.

https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://www.gitignore.io/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 26

Other forms of .gitignore

.gitignore files are intended to be committed as part of the repository. If you want to ignore certain files without
committing the ignore rules, here are some options:

Edit the .git/info/exclude file (using the same syntax as .gitignore). The rules will be global in the scope
of the repository;
Set up a global gitignore file that will apply ignore rules to all your local repositories:

Furthermore, you can ignore local changes to tracked files without changing the global git configuration with:

git update-index --skip-worktree [<file>...]: for minor local modifications
git update-index --assume-unchanged [<file>...]: for production ready, non-changing files upstream

See more details on differences between the latter flags and the git update-index documentation for further
options.

Cleaning up ignored files

You can use git clean -X to cleanup ignored files:

git clean -Xn #display a list of ignored files
git clean -Xf #remove the previously displayed files

Note: -X (caps) cleans up only ignored files. Use -x (no caps) to also remove untracked files.

See the git clean documentation for more details.

See the Git manual for more details.

Section 5.2: Checking if a file is ignored
The git check-ignore command reports on files ignored by Git.

You can pass filenames on the command line, and git check-ignore will list the filenames that are ignored. For
example:

$ cat .gitignore
*.o
$ git check-ignore example.o Readme.md
example.o

Here, only *.o files are defined in .gitignore, so Readme.md is not listed in the output of git check-ignore.

If you want to see line of which .gitignore is responsible for ignoring a file, add -v to the git check-ignore command:

$ git check-ignore -v example.o Readme.md
.gitignore:1:*.o example.o

From Git 1.7.6 onwards you can also use git status --ignored in order to see ignored files. You can find more
info on this in the official documentation or in Finding files ignored by .gitignore.

http://stackoverflow.com/a/13631525/4531270
https://git-scm.com/docs/git-update-index
https://git-scm.com/docs/git-update-index
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/git-check-ignore
https://git-scm.com/docs/git-check-ignore
https://git-scm.com/docs/git-status
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 27

Section 5.3: Exceptions in a .gitignore file
If you ignore files by using a pattern but have exceptions, prefix an exclamation mark(!) to the exception. For
example:

*.txt
!important.txt

The above example instructs Git to ignore all files with the .txt extension except for files named important.txt.

If the file is in an ignored folder, you can NOT re-include it so easily:

folder/
!folder/*.txt

In this example all .txt files in the folder would remain ignored.

The right way is re-include the folder itself on a separate line, then ignore all files in folder by *, finally re-include
the *.txt in folder, as the following:

!folder/
folder/*
!folder/*.txt

Note: For file names beginning with an exclamation mark, add two exclamation marks or escape with the \
character:

!!includethis
\!excludethis

Section 5.4: A global .gitignore file
To have Git ignore certain files across all repositories you can create a global .gitignore with the following command
in your terminal or command prompt:

$ git config --global core.excludesfile <Path_To_Global_gitignore_file>

Git will now use this in addition to each repository's own .gitignore file. Rules for this are:

If the local .gitignore file explicitly includes a file while the global .gitignore ignores it, the local
.gitignore takes priority (the file will be included)
If the repository is cloned on multiple machines, then the global .gigignore must be loaded on all machines
or at least include it, as the ignored files will be pushed up to the repo while the PC with the global
.gitignore wouldn't update it. This is why a repo specific .gitignore is a better idea than a global one if the
project is worked on by a team

This file is a good place to keep platform, machine or user specific ignores, e.g. OSX .DS_Store, Windows Thumbs.db
or Vim *.ext~ and *.ext.swp ignores if you don't want to keep those in the repository. So one team member
working on OS X can add all .DS_STORE and _MACOSX (which is actually useless), while another team member on
Windows can ignore all thumbs.bd

Section 5.5: Ignore files that have already been committed to

https://help.github.com/articles/ignoring-files/#create-a-global-gitignore
https://git-scm.com/docs/gitignore
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 28

a Git repository
If you have already added a file to your Git repository and now want to stop tracking it (so that it won't be present
in future commits), you can remove it from the index:

git rm --cached <file>

This will remove the file from the repository and prevent further changes from being tracked by Git. The --cached
option will make sure that the file is not physically deleted.

Note that previously added contents of the file will still be visible via the Git history.

Keep in mind that if anyone else pulls from the repository after you removed the file from the index, their copy
will be physically deleted.

You can make Git pretend that the working directory version of the file is up to date and read the index version
instead (thus ignoring changes in it) with "skip worktree" bit:

git update-index --skip-worktree <file>

Writing is not affected by this bit, content safety is still first priority. You will never lose your precious ignored
changes; on the other hand this bit conflicts with stashing: to remove this bit, use

git update-index --no-skip-worktree <file>

It is sometimes wrongly recommended to lie to Git and have it assume that file is unchanged without examining it.
It looks at first glance as ignoring any further changes to the file, without removing it from its index:

git update-index --assume-unchanged <file>

This will force git to ignore any change made in the file (keep in mind that if you pull any changes to this file, or you
stash it, your ignored changes will be lost)

If you want git to "care" about this file again, run the following command:

git update-index --no-assume-unchanged <file>

Section 5.6: Ignore files locally without committing ignore
rules
.gitignore ignores files locally, but it is intended to be committed to the repository and shared with other
contributors and users. You can set a global .gitignore, but then all your repositories would share those settings.

If you want to ignore certain files in a repository locally and not make the file part of any repository, edit
.git/info/exclude inside your repository.

For example:

these files are only ignored on this repo
these rules are not shared with anyone
as they are personal
gtk_tests.py
gui/gtk/tests/*
localhost

https://www.kernel.org/pub/software/scm/git/docs/git-update-index.html#_skip_worktree_bit
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 29

pushReports.py
server/

Section 5.7: Ignoring subsequent changes to a file (without
removing it)
Sometimes you want to have a file held in Git but ignore subsequent changes.

Tell Git to ignore changes to a file or directory using update-index:

git update-index --assume-unchanged my-file.txt

The above command instructs Git to assume my-file.txt hasn't been changed, and not to check or report
changes. The file is still present in the repository.

This can be useful for providing defaults and allowing local environment overrides, e.g.:

create a file with some values in
cat <<EOF
MYSQL_USER=app
MYSQL_PASSWORD=FIXME_SECRET_PASSWORD
EOF > .env

commit to Git
git add .env
git commit -m "Adding .env template"

ignore future changes to .env
git update-index --assume-unchanged .env

update your password
vi .env

no changes!
git status

Section 5.8: Ignoring a file in any directory
To ignore a file foo.txt in any directory you should just write its name:

foo.txt # matches all files 'foo.txt' in any directory

If you want to ignore the file only in part of the tree, you can specify the subdirectories of a specific directory with
** pattern:

bar/**/foo.txt # matches all files 'foo.txt' in 'bar' and all subdirectories

Or you can create a .gitignore file in the bar/ directory. Equivalent to the previous example would be creating file
bar/.gitignore with these contents:

foo.txt # matches all files 'foo.txt' in any directory under bar/

Section 5.9: Prefilled .gitignore Templates
If you are unsure which rules to list in your .gitignore file, or you just want to add generally accepted exceptions

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 30

to your project, you can choose or generate a .gitignore file:

https://www.gitignore.io/
https://github.com/github/gitignore

Many hosting services such as GitHub and BitBucket offer the ability to generate .gitignore files based upon the
programming languages and IDEs you may be using:

Section 5.10: Ignoring files in subfolders (Multiple gitignore
files)
Suppose you have a repository structure like this:

examples/
 output.log
src/
 <files not shown>
 output.log
README.md

output.log in the examples directory is valid and required for the project to gather an understanding while the one
beneath src/ is created while debugging and should not be in the history or part of the repository.

There are two ways to ignore this file. You can place an absolute path into the .gitignore file at the root of the
working directory:

https://www.gitignore.io/
https://github.com/github/gitignore
http://i.stack.imgur.com/WfT5z.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 31

/.gitignore
src/output.log

Alternatively, you can create a .gitignore file in the src/ directory and ignore the file that is relative to this
.gitignore:

/src/.gitignore
output.log

Section 5.11: Create an Empty Folder
It is not possible to add and commit an empty folder in Git due to the fact that Git manages files and attaches their
directory to them, which slims down commits and improves speed. To get around this, there are two methods:

Method one: .gitkeep

One hack to get around this is to use a .gitkeep file to register the folder for Git. To do this, just create the required
directory and add a .gitkeep file to the folder. This file is blank and doesn't serve any purpose other than to just
register the folder. To do this in Windows (which has awkward file naming conventions) just open git bash in the
directory and run the command:

$ touch .gitkeep

This command just makes a blank .gitkeep file in the current directory

Method two: dummy.txt

Another hack for this is very similar to the above and the same steps can be followed, but instead of a .gitkeep,
just use a dummy.txt instead. This has the added bonus of being able to easily create it in Windows using the
context menu. And you get to leave funny messages in them too.You can also use .gitkeep file to track the empty
directory. .gitkeep normally is an empty file that is added to track the empty directory.

Section 5.12: Finding files ignored by .gitignore
You can list all files ignored by git in current directory with command:

git status --ignored

So if we have repository structure like this:

.git

.gitignore

./example_1

./dir/example_2

./example_2

...and .gitignore file containing:

example_2

...than result of the command will be:

$ git status --ignored

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 32

On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

.gitignore

.example_1

Ignored files:
 (use "git add -f <file>..." to include in what will be committed)

dir/
example_2

If you want to list recursively ignored files in directories, you have to use additional parameter - --untracked-
files=all

Result will look like this:

$ git status --ignored --untracked-files=all
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

.gitignore
example_1

Ignored files:
 (use "git add -f <file>..." to include in what will be committed)

dir/example_2
example_2

Section 5.13: Ignoring only part of a file [stub]
Sometimes you may want to have local changes in a file you don't want to commit or publish. Ideally local settings
should be concentrated in a separate file that can be placed into .gitignore, but sometimes as a short-term
solution it can be helpful to have something local in a checked-in file.

You can make Git "unsee" those lines using clean filter. They won't even show up in diffs.

Suppose here is snippet from file file1.c:

struct settings s;
s.host = "localhost";
s.port = 5653;
s.auth = 1;
s.port = 15653; // NOCOMMIT
s.debug = 1; // NOCOMMIT
s.auth = 0; // NOCOMMIT

You don't want to publish NOCOMMIT lines anywhere.

Create "nocommit" filter by adding this to Git config file like .git/config:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 33

[filter "nocommit"]
 clean=grep -v NOCOMMIT

Add (or create) this to .git/info/attributes or .gitmodules:

file1.c filter=nocommit

And your NOCOMMIT lines are hidden from Git.

Caveats:

Using clean filter slows down processing of files, especially on Windows.
The ignored line may disappear from file when Git updates it. It can be counteracted with a smudge filter, but
it is trickier.
Not tested on Windows

Section 5.14: Ignoring changes in tracked files. [stub]
.gitignore and .git/info/exclude work only for untracked files.

To set ignore flag on a tracked file, use the command update-index:

git update-index --skip-worktree myfile.c

To revert this, use:

git update-index --no-skip-worktree myfile.c

You can add this snippet to your global git config to have more convenient git hide, git unhide and git hidden
commands:

[alias]
 hide = update-index --skip-worktree
 unhide = update-index --no-skip-worktree
 hidden = "!git ls-files -v | grep ^[hsS] | cut -c 3-"

You can also use the option --assume-unchanged with the update-index function

git update-index --assume-unchanged <file>

If you want to watch this file again for the changes, use

git update-index --no-assume-unchanged <file>

When --assume-unchanged flag is specified, the user promises not to change the file and allows Git to assume that
the working tree file matches what is recorded in the index.Git will fail in case it needs to modify this file in the
index e.g. when merging in a commit; thus, in case the assumed-untracked file is changed upstream, you will need
to handle the situation manually.The focus lies on performance in this case.

While --skip-worktree flag is useful when you instruct git not to touch a specific file ever because the file is going to
be changed locally and you don't want to accidentally commit the changes (i.e configuration/properties file
configured for a particular environment). Skip-worktree takes precedence over assume-unchanged when both are
set.

https://git-scm.com/docs/gitignore
https://git-scm.com/docs/git-update-index
https://git-scm.com/docs/git-config
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 34

Section 5.15: Clear already committed files, but included in
.gitignore
Sometimes it happens that a file was being tracked by git, but in a later point in time was added to .gitignore, in
order to stop tracking it. It's a very common scenario to forget to clean up such files before its addition to .gitignore.
In this case, the old file will still be hanging around in the repository.

To fix this problem, one could perform a "dry-run" removal of everything in the repository, followed by re-adding all
the files back. As long as you don't have pending changes and the --cached parameter is passed, this command is
fairly safe to run:

Remove everything from the index (the files will stay in the file system)
$ git rm -r --cached .

Re-add everything (they'll be added in the current state, changes included)
$ git add .

Commit, if anything changed. You should see only deletions
$ git commit -m 'Remove all files that are in the .gitignore'

Update the remote
$ git push origin master

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 35

Chapter 6: Git Di
Parameter Details

-p, -u, --patch Generate patch

-s, --no-patch Suppress diff output. Useful for commands like git show that show the patch by default, or to
cancel the effect of --patch

--raw Generate the diff in raw format

--diff-algorithm= Choose a diff algorithm. The variants are as follows: myers, minimal, patience, histogram

--summary Output a condensed summary of extended header information such as creations, renames and
mode changes

--name-only Show only names of changed files

--name-status Show names and statuses of changed files The most common statuses are M (Modified), A
(Added), and D (Deleted)

--check

Warn if changes introduce conflict markers or whitespace errors. What are considered whitespace
errors is controlled by core.whitespace configuration. By default, trailing whitespaces (including
lines that solely consist of whitespaces) and a space character that is immediately followed by a
tab character inside the initial indent of the line are considered whitespace errors. Exits with non-
zero status if problems are found. Not compatible with --exit-code

--full-index Instead of the first handful of characters, show the full pre- and post-image blob object names on
the "index" line when generating patch format output

--binary In addition to --full-index, output a binary diff that can be applied with git apply

-a, --text Treat all files as text.

--color Set the color mode; i.e. use --color=always if you would like to pipe a diff to less and keep git's
coloring

Section 6.1: Show dierences in working branch
git diff

This will show the unstaged changes on the current branch from the commit before it. It will only show changes
relative to the index, meaning it shows what you could add to the next commit, but haven't. To add (stage) these
changes, you can use git add.

If a file is staged, but was modified after it was staged, git diff will show the differences between the current file
and the staged version.

Section 6.2: Show changes between two commits
git diff 1234abc..6789def # old new

E.g.: Show the changes made in the last 3 commits:

git diff @~3..@ # HEAD -3 HEAD

Note: the two dots (..) is optional, but adds clarity.

This will show the textual difference between the commits, regardless of where they are in the tree.

Section 6.3: Show dierences for staged files
git diff --staged

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 36

This will show the changes between the previous commit and the currently staged files.

NOTE: You can also use the following commands to accomplish the same thing:

git diff --cached

Which is just a synonym for --staged or

git status -v

Which will trigger the verbose settings of the status command.

Section 6.4: Comparing branches
Show the changes between the tip of new and the tip of original:

git diff original new # equivalent to original..new

Show all changes on new since it branched from original:

git diff original...new # equivalent to $(git merge-base original new)..new

Using only one parameter such as

git diff original

is equivalent to

git diff original..HEAD

Section 6.5: Show both staged and unstaged changes
To show all staged and unstaged changes, use:

git diff HEAD

NOTE: You can also use the following command:

git status -vv

The difference being that the output of the latter will actually tell you which changes are staged for commit and
which are not.

Section 6.6: Show dierences for a specific file or directory
git diff myfile.txt

Shows the changes between the previous commit of the specified file (myfile.txt) and the locally-modified version
that has not yet been staged.

This also works for directories:

git diff documentation

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 37

The above shows the changes between the previous commit of all files in the specified directory (documentation/)
and the locally-modified versions of these files, that have not yet been staged.

To show the difference between some version of a file in a given commit and the local HEAD version you can specify
the commit you want to compare against:

git diff 27fa75e myfile.txt

Or if you want to see the version between two separate commits:

git diff 27fa75e ada9b57 myfile.txt

To show the difference between the version specified by the hash ada9b57 and the latest commit on the branch
my_branchname for only the relative directory called my_changed_directory/ you can do this:

git diff ada9b57 my_branchname my_changed_directory/

Section 6.7: Viewing a word-di for long lines
git diff [HEAD|--staged...] --word-diff

Rather than displaying lines changed, this will display differences within lines. For example, rather than:

-Hello world
+Hello world!

Where the whole line is marked as changed, word-diff alters the output to:

Hello [-world-]{+world!+}

You can omit the markers [-, -], {+, +} by specifying --word-diff=color or --color-words. This will only use color
coding to mark the difference:

Section 6.8: Show dierences between current version and
last version
git diff HEAD^ HEAD

This will show the changes between the previous commit and the current commit.

Section 6.9: Produce a patch-compatible di
Sometimes you just need a diff to apply using patch. The regular git --diff does not work. Try this instead:

git diff --no-prefix > some_file.patch

Then somewhere else you can reverse it:

patch -p0 < some_file.patch

http://i.stack.imgur.com/1vsUP.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 38

Section 6.10: dierence between two commit or branch
To view difference between two branch

git diff <branch1>..<branch2>

To view difference between two branch

git diff <commitId1>..<commitId2>

To view diff with current branch

git diff <branch/commitId>

To view summary of changes

git diff --stat <branch/commitId>

To view files that changed after a certain commit

git diff --name-only <commitId>

To view files that are different than a branch

git diff --name-only <branchName>

To view files that changed in a folder after a certain commit

git diff --name-only <commitId> <folder_path>

Section 6.11: Using meld to see all modifications in the working
directory
git difftool -t meld --dir-diff

will show the working directory changes. Alternatively,

git difftool -t meld --dir-diff [COMMIT_A] [COMMIT_B]

will show the differences between 2 specific commits.

Section 6.12: Di UTF-16 encoded text and binary plist files
You can diff UTF-16 encoded files (localization strings file os iOS and macOS are examples) by specifying how git
should diff these files.

Add the following to your ~/.gitconfig file.

[diff "utf16"]
textconv = "iconv -f utf-16 -t utf-8"

iconv is a program to convert different encodings.

http://linux.die.net/man/1/iconv
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 39

Then edit or create a .gitattributes file in the root of the repository where you want to use it. Or just edit
~/.gitattributes.

*.strings diff=utf16

This will convert all files ending in .strings before git diffs.

You can do similar things for other files, that can be converted to text.

For binary plist files you edit .gitconfig

[diff "plist"]
textconv = plutil -convert xml1 -o -

and .gitattributes

*.plist diff=plist

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 40

Chapter 7: Undoing
Section 7.1: Return to a previous commit
To jump back to a previous commit, first find the commit's hash using git log.

To temporarily jump back to that commit, detach your head with:

git checkout 789abcd

This places you at commit 789abcd. You can now make new commits on top of this old commit without affecting the
branch your head is on. Any changes can be made into a proper branch using either branch or checkout -b.

To roll back to a previous commit while keeping the changes:

git reset --soft 789abcd

To roll back the last commit:

git reset --soft HEAD~

To permanently discard any changes made after a specific commit, use:

git reset --hard 789abcd

To permanently discard any changes made after the last commit:

git reset --hard HEAD~

Beware: While you can recover the discarded commits using reflog and reset, uncommitted changes cannot be
recovered. Use git stash; git reset instead of git reset --hard to be safe.

Section 7.2: Undoing changes
Undo changes to a file or directory in the working copy.

git checkout -- file.txt

Used over all file paths, recursively from the current directory, it will undo all changes in the working copy.

git checkout -- .

To only undo parts of the changes use --patch. You will be asked, for each change, if it should be undone or not.

git checkout --patch -- dir

To undo changes added to the index.

git reset --hard

Without the --hard flag this will do a soft reset.

With local commits that you have yet to push to a remote you can also do a soft reset. You can thus rework the files

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 41

and then the commits.

git reset HEAD~2

The above example would unwind your last two commits and return the files to your working copy. You could then
make further changes and new commits.

Beware: All of these operations, apart from soft resets, will permanently delete your changes. For a safer option,
use git stash -p or git stash, respectively. You can later undo with stash pop or delete forever with stash drop.

Section 7.3: Using reflog
If you screw up a rebase, one option to start again is to go back to the commit (pre rebase). You can do this using
reflog (which has the history of everything you've done for the last 90 days - this can be configured):

$ git reflog
4a5cbb3 HEAD@{0}: rebase finished: returning to refs/heads/foo
4a5cbb3 HEAD@{1}: rebase: fixed such and such
904f7f0 HEAD@{2}: rebase: checkout upstream/master
3cbe20a HEAD@{3}: commit: fixed such and such
...

You can see the commit before the rebase was HEAD@{3} (you can also checkout the hash):

git checkout HEAD@{3}

Now you create a new branch / delete the old one / try the rebase again.

You can also reset directly back to a point in your reflog, but only do this if you're 100% sure it's what you want to
do:

git reset --hard HEAD@{3}

This will set your current git tree to match how it was at that point (See Undoing Changes).

This can be used if you're temporarily seeing how well a branch works when rebased on another branch, but you
don't want to keep the results.

Section 7.4: Undoing merges
Undoing a merge not yet pushed to a remote

If you haven't yet pushed your merge to the remote repository then you can follow the same procedure as in undo
the commit although there are some subtle differences.

A reset is the simplest option as it will undo both the merge commit and any commits added from the branch.
However, you will need to know what SHA to reset back to, this can be tricky as your git log will now show
commits from both branches. If you reset to the wrong commit (e.g. one on the other branch) it can destroy
committed work.

> git reset --hard <last commit from the branch you are on>

Or, assuming the merge was your most recent commit.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 42

> git reset HEAD~

A revert is safer, in that it won't destroy committed work, but involves more work as you have to revert the revert
before you can merge the branch back in again (see the next section).

Undoing a merge pushed to a remote

Assume you merge in a new feature (add-gremlins)

> git merge feature/add-gremlins
...
 #Resolve any merge conflicts
> git commit #commit the merge
...
> git push
...
 501b75d..17a51fd master -> master

Afterwards you discover that the feature you just merged in broke the system for other developers, it must be
undone right away, and fixing the feature itself will take too long so you simply want to undo the merge.

> git revert -m 1 17a51fd
...
> git push
...
 17a51fd..e443799 master -> master

At this point the gremlins are out of the system and your fellow developers have stopped yelling at you. However,
we are not finished just yet. Once you fix the problem with the add-gremlins feature you will need to undo this
revert before you can merge back in.

> git checkout feature/add-gremlins
...
 #Various commits to fix the bug.
> git checkout master
...
> git revert e443799
...
> git merge feature/add-gremlins
...
 #Fix any merge conflicts introduced by the bug fix
> git commit #commit the merge
...
> git push

At this point your feature is now successfully added. However, given that bugs of this type are often introduced by
merge conflicts a slightly different workflow is sometimes more helpful as it lets you fix the merge conflict on your
branch.

> git checkout feature/add-gremlins
...
 #Merge in master and revert the revert right away. This puts your branch in
 #the same broken state that master was in before.
> git merge master
...
> git revert e443799
...
 #Now go ahead and fix the bug (various commits go here)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 43

> git checkout master
...
 #Don't need to revert the revert at this point since it was done earlier
> git merge feature/add-gremlins
...
 #Fix any merge conflicts introduced by the bug fix
> git commit #commit the merge
...
> git push

Section 7.5: Revert some existing commits
Use git revert to revert existing commits, especially when those commits have been pushed to a remote repository.
It records some new commits to reverse the effect of some earlier commits, which you can push safely without
rewriting history.

Don't use git push --force unless you wish to bring down the opprobrium of all other users of that repository.
Never rewrite public history.

If, for example, you've just pushed up a commit that contains a bug and you need to back it out, do the following:

git revert HEAD~1
git push

Now you are free to revert the revert commit locally, fix your code, and push the good code:

git revert HEAD~1
work .. work .. work ..
git add -A .
git commit -m "Update error code"
git push

If the commit you want to revert is already further back in the history, you can simply pass the commit hash. Git will
create a counter-commit undoing your original commit, which you can push to your remote safely.

git revert 912aaf0228338d0c8fb8cca0a064b0161a451fdc
git push

Section 7.6: Undo / Redo a series of commits
Assume you want to undo a dozen of commits and you want only some of them.

git rebase -i <earlier SHA>

-i puts rebase in "interactive mode". It starts off like the rebase discussed above, but before replaying any commits,
it pauses and allows you to gently modify each commit as it's replayed.rebase -i will open in your default text
editor, with a list of commits being applied, like this:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 44

To drop a commit, just delete that line in your editor. If you no longer want the bad commits in your project, you
can delete lines 1 and 3-4 above.If you want to combine two commits together, you can use the squash or fixup
commands

http://i.stack.imgur.com/VHTqM.png
http://i.stack.imgur.com/MV9Xd.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 45

Chapter 8: Merging
Parameter Details

-m Message to be included in the merge commit
-v Show verbose output
--abort Attempt to revert all files back to their state
--ff-only Aborts instantly when a merge-commit would be required
--no-ff Forces creation of a merge-commit, even if it wasn't mandatory
--no-commit Pretends the merge failed to allow inspection and tweaking of the result
--stat Show a diffstat after merge completion

-n/--no-stat Don't show the diffstat
--squash Allows for a single commit on the current branch with the merged changes

Section 8.1: Automatic Merging
When the commits on two branches don't conflict, Git can automatically merge them:

~/Stack Overflow(branch:master) » git merge another_branch
Auto-merging file_a
Merge made by the 'recursive' strategy.
 file_a | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

Section 8.2: Finding all branches with no merged changes
Sometimes you might have branches lying around that have already had their changes merged into master. This
finds all branches that are not master that have no unique commits as compared to master. This is very useful for
finding branches that were not deleted after the PR was merged into master.

 for branch in $(git branch -r) ; do
 ["${branch}" != "origin/master"] && [$(git diff master...${branch} | wc -l) -eq 0] && echo -
e `git show --pretty=format:"%ci %cr" $branch | head -n 1`\\t$branch
 done | sort -r

Section 8.3: Aborting a merge
After starting a merge, you might want to stop the merge and return everything to its pre-merge state. Use --abort:

git merge --abort

Section 8.4: Merge with a commit
Default behaviour is when the merge resolves as a fast-forward, only update the branch pointer, without creating a
merge commit. Use --no-ff to resolve.

git merge <branch_name> --no-ff -m "<commit message>"

Section 8.5: Keep changes from only one side of a merge
During a merge, you can pass --ours or --theirs to git checkout to take all changes for a file from one side or
the other of a merge.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 46

$ git checkout --ours -- file1.txt # Use our version of file1, delete all their changes
$ git checkout --theirs -- file2.txt # Use their version of file2, delete all our changes

Section 8.6: Merge one branch into another
git merge incomingBranch

This merges the branch incomingBranch into the branch you are currently in. For example, if you are currently in
master, then incomingBranch will be merged into master.

Merging can create conflicts in some cases. If this happens, you will see the message Automatic merge failed;
fix conflicts and then commit the result. You will need to manually edit the conflicted files, or to undo your
merge attempt, run:

git merge --abort

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 47

Chapter 9: Submodules
Section 9.1: Cloning a Git repository having submodules
When you clone a repository that uses submodules, you'll need to initialize and update them.

$ git clone --recursive https://github.com/username/repo.git

This will clone the referenced submodules and place them in the appropriate folders (including submodules within
submodules). This is equivalent to running git submodule update --init --recursive immediately after the
clone is finished.

Section 9.2: Updating a Submodule
A submodule references a specific commit in another repository. To check out the exact state that is referenced for
all submodules, run

git submodule update --recursive

Sometimes instead of using the state that is referenced you want to update to your local checkout to the latest
state of that submodule on a remote. To check out all submodules to the latest state on the remote with a single
command, you can use

git submodule foreach git pull <remote> <branch>

or use the default git pull arguments

git submodule foreach git pull

Note that this will just update your local working copy. Running git status will list the submodule directory as dirty
if it changed because of this command. To update your repository to reference the new state instead, you have to
commit the changes:

git add <submodule_directory>
git commit

There might be some changes you have that can have merge conflict if you use git pull so you can use git pull
--rebase to rewind your changes to top, most of the time it decreases the chances of conflict. Also it pulls all the
branches to local.

git submodule foreach git pull --rebase

To checkout the latest state of a specific submodule, you can use :

git submodule update --remote <submodule_directory>

Section 9.3: Adding a submodule
You can include another Git repository as a folder within your project, tracked by Git:

$ git submodule add https://github.com/jquery/jquery.git

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 48

You should add and commit the new .gitmodules file; this tells Git what submodules should be cloned when git
submodule update is run.

Section 9.4: Setting a submodule to follow a branch
A submodule is always checked out at a specific commit SHA1 (the "gitlink", special entry in the index of the parent
repo)

But one can request to update that submodule to the latest commit of a branch of the submodule remote repo.

Rather than going in each submodule, doing a git checkout abranch --track origin/abranch, git pull, you
can simply do (from the parent repo) a:

git submodule update --remote --recursive

Since the SHA1 of the submodule would change, you would still need to follow that with:

git add .
git commit -m "update submodules"

That supposes the submodules were:

either added with a branch to follow:

 git submodule -b abranch -- /url/of/submodule/repo

or configured (for an existing submodule) to follow a branch:

 cd /path/to/parent/repo
 git config -f .gitmodules submodule.asubmodule.branch abranch

Section 9.5: Moving a submodule
Version > 1.8

Run:

$ git mv /path/to/module new/path/to/module
Version ≤ 1.8

Edit .gitmodules and change the path of the submodule appropriately, and put it in the index with git add1.
.gitmodules.

If needed, create the parent directory of the new location of the submodule (mkdir -p /path/to).2.

Move all content from the old to the new directory (mv -vi /path/to/module new/path/to/submodule).3.

Make sure Git tracks this directory (git add /path/to).4.

Remove the old directory with git rm --cached /path/to/module.5.

Move the directory .git/modules//path/to/module with all its content to .git/modules//path/to/module.6.

Edit the .git/modules//path/to/config file, make sure that worktree item points to the new locations, so in7.
this example it should be worktree = ../../../../..//path/to/module. Typically there should be two more
.. then directories in the direct path in that place. . Edit the file /path/to/module/.git, make sure that the path

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 49

in it points to the correct new location inside the main project .git folder, so in this example gitdir:
../../../.git/modules//path/to/module.

git status output looks like this afterwards:

 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # modified: .gitmodules
 # renamed: old/path/to/submodule -> new/path/to/submodule
 #

Finally, commit the changes.8.

This example from Stack Overflow, by Axel Beckert

Section 9.6: Removing a submodule
Version > 1.8

You can remove a submodule (e.g. the_submodule) by calling:

$ git submodule deinit the_submodule
$ git rm the_submodule

git submodule deinit the_submodule deletes the_submodules' entry from .git/config. This excludes
the_submodule from git submodule update, git submodule sync and git submodule foreach calls and
deletes its local content (source). Also, this will not be shown as change in your parent repository. git
submodule init and git submodule update will restore the submodule, again without commitable changes
in your parent repository.

git rm the_submodule will remove the submodule from the work tree. The files will be gone as well as the
submodules' entry in the .gitmodules file (source). If only git rm the_submodule (without prior git
submodule deinit the_submodule is run, however, the submodules' entry in your .git/config file will remain.

Version < 1.8

Taken from here:

Delete the relevant section from the .gitmodules file.1.
Stage the .gitmodules changes git add .gitmodules2.
Delete the relevant section from .git/config.3.
Run git rm --cached path_to_submodule (no trailing slash).4.
Run rm -rf .git/modules/path_to_submodule5.
Commit git commit -m "Removed submodule <name>"6.
Delete the now untracked submodule files7.
rm -rf path_to_submodule8.

http://stackoverflow.com/a/6310246
http://stackoverflow.com/users/793172
https://git-scm.com/docs/git-submodule#git-submodule-deinit
https://git-scm.com/docs/git-rm#_submodules
http://stackoverflow.com/a/1260982/7598462
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 50

Chapter 10: Committing
Parameter Details

--message, -m Message to include in the commit. Specifying this parameter bypasses Git's normal
behavior of opening an editor.

--amend Specify that the changes currently staged should be added (amended) to the
previous commit. Be careful, this can rewrite history!

--no-edit
Use the selected commit message without launching an editor. For example, git
commit --amend --no-edit amends a commit without changing its commit
message.

--all, -a Commit all changes, including changes that aren't yet staged.

--date Manually set the date that will be associated with the commit.

--only Commit only the paths specified. This will not commit what you currently have
staged unless told to do so.

--patch, -p Use the interactive patch selection interface to chose which changes to commit.

--help Displays the man page for git commit

-S[keyid], -S --gpg-
sign[=keyid], -S --no-gpg-sign

Sign commit, GPG-sign commit, countermand commit.gpgSign configuration
variable

-n, --no-verify This option bypasses the pre-commit and commit-msg hooks. See also Hooks

Commits with Git provide accountability by attributing authors with changes to code. Git offers multiple features for
the specificity and security of commits. This topic explains and demonstrates proper practices and procedures in
committing with Git.

Section 10.1: Stage and commit changes
The basics

After making changes to your source code, you should stage those changes with Git before you can commit them.

For example, if you change README.md and program.py:

git add README.md program.py

This tells git that you want to add the files to the next commit you do.

Then, commit your changes with

git commit

Note that this will open a text editor, which is often vim. If you are not familiar with vim, you might want to know
that you can press i to go into insert mode, write your commit message, then press Esc and :wq to save and quit. To
avoid opening the text editor, simply include the -m flag with your message

git commit -m "Commit message here"

Commit messages often follow some specific formatting rules, see Good commit messages for more information.

Shortcuts

If you have changed a lot of files in the directory, rather than listing each one of them, you could use:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 51

git add --all # equivalent to "git add -a"

Or to add all changes, not including files that have been deleted, from the top-level directory and subdirectories:

git add .

Or to only add files which are currently tracked ("update"):

git add -u

If desired, review the staged changes:

git status # display a list of changed files
git diff --cached # shows staged changes inside staged files

Finally, commit the changes:

git commit -m "Commit message here"

Alternately, if you have only modified existing files or deleted files, and have not created any new ones, you can
combine the actions of git add and git commit in a single command:

git commit -am "Commit message here"

Note that this will stage all modified files in the same way as git add --all.

Sensitive data

You should never commit any sensitive data, such as passwords or even private keys. If this case happens and the
changes are already pushed to a central server, consider any sensitive data as compromised. Otherwise, it is
possible to remove such data afterwards. A fast and easy solution is the usage of the "BFG Repo-Cleaner":
https://rtyley.github.io/bfg-repo-cleaner/.

The command bfg --replace-text passwords.txt my-repo.git reads passwords out of the passwords.txt file
and replaces these with ***REMOVED***. This operation considers all previous commits of the entire repository.

Section 10.2: Good commit messages
It is important for someone traversing through the git log to easily understand what each commit was all about.
Good commit messages usually include a number of a task or an issue in a tracker and a concise description of
what has been done and why, and sometimes also how it has been done.

Better messages may look like:

TASK-123: Implement login through OAuth
TASK-124: Add auto minification of JS/CSS files
TASK-125: Fix minifier error when name > 200 chars

Whereas the following messages would not be quite as useful:

fix // What has been fixed?

https://rtyley.github.io/bfg-repo-cleaner/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 52

just a bit of a change // What has changed?
TASK-371 // No description at all, reader will need to look at the tracker
themselves for an explanation
Implemented IFoo in IBar // Why it was needed?

A way to test if a commit message is written in the correct mood is to replace the blank with the message and see if
it makes sense:

If I add this commit, I will ___ to my repository.

The seven rules of a great git commit message

Separate the subject line from body with a blank line1.
Limit the subject line to 50 characters2.
Capitalize the subject line3.
Do not end the subject line with a period4.
Use the imperative mood in the subject line5.
Manually wrap each line of the body at 72 characters6.
Use the body to explain what and why instead of how7.

7 rules from Chris Beam's blog.

Section 10.3: Amending a commit
If your latest commit is not published yet (not pushed to an upstream repository) then you can amend your
commit.

git commit --amend

This will put the currently staged changes onto the previous commit.

Note: This can also be used to edit an incorrect commit message. It will bring up the default editor (usually vi / vim
/ emacs) and allow you to change the prior message.

To specify the commit message inline:

git commit --amend -m "New commit message"

Or to use the previous commit message without changing it:

git commit --amend --no-edit

Amending updates the commit date but leaves the author date untouched. You can tell git to refresh the
information.

git commit --amend --reset-author

You can also change the author of the commit with:

git commit --amend --author "New Author <email@address.com>"

Note: Be aware that amending the most recent commit replaces it entirely and the previous commit is removed
from the branch's history. This should be kept in mind when working with public repositories and on branches with
other collaborators.

https://en.wikipedia.org/wiki/Imperative_mood
http://chris.beams.io/posts/git-commit/#seven-rules
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 53

This means that if the earlier commit had already been pushed, after amending it you will have to push --force.

Section 10.4: Committing without opening an editor
Git will usually open an editor (like vim or emacs) when you run git commit. Pass the -m option to specify a message
from the command line:

git commit -m "Commit message here"

Your commit message can go over multiple lines:

git commit -m "Commit 'subject line' message here

More detailed description follows here (after a blank line)."

Alternatively, you can pass in multiple -m arguments:

git commit -m "Commit summary" -m "More detailed description follows here"

See How to Write a Git Commit Message.

Udacity Git Commit Message Style Guide

Section 10.5: Committing changes directly
Usually, you have to use git add or git rm to add changes to the index before you can git commit them. Pass the
-a or --all option to automatically add every change (to tracked files) to the index, including removals:

git commit -a

If you would like to also add a commit message you would do:

git commit -a -m "your commit message goes here"

Also, you can join two flags:

git commit -am "your commit message goes here"

You don't necessarily need to commit all files at once. Omit the -a or --all flag and specify which file you want to
commit directly:

git commit path/to/a/file -m "your commit message goes here"

For directly committing more than one specific file, you can specify one or multiple files, directories and patterns as
well:

git commit path/to/a/file path/to/a/folder/* path/to/b/file -m "your commit message goes here"

Section 10.6: Selecting which lines should be staged for
committing
Suppose you have many changes in one or more files but from each file you only want to commit some of the
changes, you can select the desired changes using:

http://chris.beams.io/posts/git-commit/
https://udacity.github.io/git-styleguide/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 54

git add -p

or

git add -p [file]

Each of your changes will be displayed individually, and for each change you will be prompted to choose one of he
following options:

y - Yes, add this hunk

n - No, don’t add this hunk

d - No, don’t add this hunk, or any other remaining hunks for this file.
Useful if you’ve already added what you want to, and want to skip over the rest.

s - Split the hunk into smaller hunks, if possible

e - Manually edit the hunk. This is probably the most powerful option.
It will open the hunk in a text editor and you can edit it as needed.

This will stage the parts of the files you choose. Then you can commit all the staged changes like this:

git commit -m 'Commit Message'

The changes that were not staged or committed will still appear in your working files, and can be committed later if
required. Or if the remaining changes are unwanted, they can be discarded with:

git reset --hard

Apart from breaking up a big change into smaller commits, this approach is also useful for reviewing what you are
about to commit. By individually confirming each change, you have an opportunity to check what you wrote, and
can avoid accidentally staging unwanted code such as println/logging statements.

Section 10.7: Creating an empty commit
Generally speaking, empty commits (or commits with state that is identical to the parent) is an error.

However, when testing build hooks, CI systems, and other systems that trigger off a commit, it's handy to be able to
easily create commits without having to edit/touch a dummy file.

The --allow-empty commit will bypass the check.

git commit -m "This is a blank commit" --allow-empty

Section 10.8: Committing on behalf of someone else
If someone else wrote the code you are committing, you can give them credit with the --author option:

git commit -m "msg" --author "John Smith <johnsmith@example.com>"

You can also provide a pattern, which Git will use to search for previous authors:

git commit -m "msg" --author "John"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 55

In this case, the author information from the most recent commit with an author containing "John" will be used.

On GitHub, commits made in either of the above ways will show a large author's thumbnail, with the committer's
smaller and in front:

Section 10.9: GPG signing commits
Determine your key ID1.

gpg --list-secret-keys --keyid-format LONG

/Users/davidcondrey/.gnupg/secring.gpg

sec 2048R/YOUR-16-DIGIT-KEY-ID YYYY-MM-DD [expires: YYYY-MM-DD]

Your ID is a alphanumeric 16-digit code following the first forward-slash.

Define your key ID in your git config2.

git config --global user.signingkey YOUR-16-DIGIT-KEY-ID

As of version 1.7.9, git commit accepts the -S option to attach a signature to your commits. Using this option3.
will prompt for your GPG passphrase and will add your signature to the commit log.

git commit -S -m "Your commit message"

Section 10.10: Commiting changes in specific files
You can commit changes made to specific files and skip staging them using git add:

git commit file1.c file2.h

Or you can first stage the files:

git add file1.c file2.h

and commit them later:

git commit

Section 10.11: Committing at a specific date
git commit -m 'Fix UI bug' --date 2016-07-01

The --date parameter sets the author date. This date will appear in the standard output of git log, for example.

http://i.stack.imgur.com/iy2My.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 56

To force the commit date too:

GIT_COMMITTER_DATE=2016-07-01 git commit -m 'Fix UI bug' --date 2016-07-01

The date parameter accepts the flexible formats as supported by GNU date, for example:

git commit -m 'Fix UI bug' --date yesterday
git commit -m 'Fix UI bug' --date '3 days ago'
git commit -m 'Fix UI bug' --date '3 hours ago'

When the date doesn't specify time, the current time will be used and only the date will be overridden.

Section 10.12: Amending the time of a commit
You cam amend the time of a commit using

git commit --amend --date="Thu Jul 28 11:30 2016 -0400"

or even

git commit --amend --date="now"

Section 10.13: Amending the author of a commit
If you make a commit as the wrong author, you can change it, and then amend

git config user.name "Full Name"
git config user.email "email@example.com"

git commit --amend --reset-author

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 57

Chapter 11: Aliases
Section 11.1: Simple aliases
There are two ways of creating aliases in Git:

with the ~/.gitconfig file:

[alias]
 ci = commit
 st = status
 co = checkout

with the command line:

 git config --global alias.ci "commit"
 git config --global alias.st "status"
 git config --global alias.co "checkout"

After the alias is created - type:

git ci instead of git commit,
git st instead of git status,
git co instead of git checkout.

As with regular git commands, aliases can be used beside arguments. For example:

 git ci -m "Commit message..."
 git co -b feature-42

Section 11.2: List / search existing aliases
You can list existing git aliases using --get-regexp:

$ git config --get-regexp '^alias\.'

Searching aliases

To search aliases, add the following to your .gitconfig under [alias]:

aliases = !git config --list | grep ^alias\\. | cut -c 7- | grep -Ei --color \"$1\" "#"

Then you can:

git aliases - show ALL aliases
git aliases commit - only aliases containing "commit"

Section 11.3: Advanced Aliases
Git lets you use non-git commands and full sh shell syntax in your aliases if you prefix them with !.

In your ~/.gitconfig file:

[alias]

http://stackoverflow.com/q/7066325/23649
http://stackoverflow.com/questions/39466417/how-do-i-search-my-git-aliases/39466418#39466418
https://en.wikipedia.org/wiki/Bourne_shell
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 58

 temp = !git add -A && git commit -m "Temp"

The fact that full shell syntax is available in these prefixed aliases also means you can use shell functions to
construct more complex aliases, such as ones which utilize command line arguments:

[alias]
 ignore = "!f() { echo $1 >> .gitignore; }; f"

The above alias defines the f function, then runs it with any arguments you pass to the alias. So running git
ignore .tmp/ would add .tmp/ to your .gitignore file.

In fact, this pattern is so useful that Git defines $1, $2, etc. variables for you, so you don't even have to define a
special function for it. (But keep in mind that Git will also append the arguments anyway, even if you access it via
these variables, so you may want to add a dummy command at the end.)

Note that aliases prefixed with ! in this way are run from the root directory of your git checkout, even if your
current directory is deeper in the tree. This can be a useful way to run a command from the root without having to
cd there explicitly.

[alias]
 ignore = "! echo $1 >> .gitignore"

Section 11.4: Temporarily ignore tracked files
To temporarily mark a file as ignored (pass file as parameter to alias) - type:

unwatch = update-index --assume-unchanged

To start tracking file again - type:

watch = update-index --no-assume-unchanged

To list all files that has been temporarily ignored - type:

unwatched = "!git ls-files -v | grep '^[[:lower:]]'"

To clear the unwatched list - type:

watchall = "!git unwatched | xargs -L 1 -I % sh -c 'git watch `echo % | cut -c 2-`'"

Example of using the aliases:

git unwatch my_file.txt
git watch my_file.txt
git unwatched
git watchall

Section 11.5: Show pretty log with branch graph
[alias]
 logp=log --pretty=format:'%h %ad | %s%d [%an]' --graph --date=short

 lg = log --graph --date-order --first-parent \
 --pretty=format:'%C(auto)%h%Creset %C(auto)%d%Creset %s %C(green)(%ad) %C(bold

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 59

cyan)<%an>%Creset'
 lgb = log --graph --date-order --branches --first-parent \
 --pretty=format:'%C(auto)%h%Creset %C(auto)%d%Creset %s %C(green)(%ad) %C(bold
cyan)<%an>%Creset'
 lga = log --graph --date-order --all \
 --pretty=format:'%C(auto)%h%Creset %C(auto)%d%Creset %s %C(green)(%ad) %C(bold
cyan)<%an>%Creset'

Here an explanation of the options and placeholder used in the --pretty format (exhaustive list are available with
git help log)

--graph - draw the commit tree

--date-order - use commit timestamp order when possible

--first-parent - follow only the first parent on merge node.

--branches - show all local branches (by default, only current branch is shown)

--all - show all local and remotes branches

%h - hash value for commit (abbreviated)

%ad - Date stamp (author)

%an - Author username

%an - Commit username

%C(auto) - to use colors defined in [color] section

%Creset - to reset color

%d - --decorate (branch & tag names)

%s - commit message

%ad - author date (will follow --date directive) (and not commiter date)

%an - author name (can be %cn for commiter name)

Section 11.6: See which files are being ignored by your
.gitignore configuration
[alias]

 ignored = ! git ls-files --others --ignored --exclude-standard --directory \
 && git ls-files --others -i --exclude-standard

Shows one line per file, so you can grep (only directories):

$ git ignored | grep '/$'
.yardoc/
doc/

Or count:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 60

~$ git ignored | wc -l
199811 # oops, my home directory is getting crowded

Section 11.7: Updating code while keeping a linear history
Sometimes you need to keep a linear (non-branching) history of your code commits. If you are working on a branch
for a while, this can be tricky if you have to do a regular git pull since that will record a merge with upstream.

[alias]
 up = pull --rebase

This will update with your upstream source, then reapply any work you have not pushed on top of whatever you
pulled down.

To use:

git up

Section 11.8: Unstage staged files
Normally, to remove files that are staged to be committed using the git reset commit, reset has a lot of functions
depending on the arguments provided to it. To completely unstage all files staged, we can make use of git aliases to
create a new alias that uses reset but now we do not need to remember to provide the correct arguments to
reset.

git config --global alias.unstage "reset --"

Now, any time you want to unstage stages files, type git unstage and you are good to go.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 61

Chapter 12: Rebasing
Parameter Details

--continue Restart the rebasing process after having resolved a merge conflict.

--abort
Abort the rebase operation and reset HEAD to the original branch. If branch was provided when
the rebase operation was started, then HEAD will be reset to branch. Otherwise HEAD will be
reset to where it was when the rebase operation was started.

--keep-empty Keep the commits that do not change anything from its parents in the result.

--skip Restart the rebasing process by skipping the current patch.

-m, --merge

Use merging strategies to rebase. When the recursive (default) merge strategy is used, this
allows rebase to be aware of renames on the upstream side. Note that a rebase merge works by
replaying each commit from the working branch on top of the upstream branch. Because of this,
when a merge conflict happens, the side reported as ours is the so-far rebased series, starting
with upstream, and theirs is the working branch. In other words, the sides are swapped.

--stat Show a diffstat of what changed upstream since the last rebase. The diffstat is also controlled by
the configuration option rebase.stat.

-x, --exec command Perform interactive rebase, stopping between each commit and executing command

Section 12.1: Local Branch Rebasing
Rebasing reapplies a series of commits on top of another commit.

To rebase a branch, checkout the branch and then rebase it on top of another branch.

git checkout topic
git rebase master # rebase current branch onto master branch

This would cause:

 A---B---C topic
/
D---E---F---G master

To turn into:

 A'--B'--C' topic
/
D---E---F---G master

These operations can be combined into a single command that checks out the branch and immediately rebases it:

git rebase master topic # rebase topic branch onto master branch

Important: After the rebase, the applied commits will have a different hash. You should not rebase commits you
have already pushed to a remote host. A consequence may be an inability to git push your local rebased branch to
a remote host, leaving your only option to git push --force.

Section 12.2: Rebase: ours and theirs, local and remote
A rebase switches the meaning of "ours" and "theirs":

https://git-scm.com/docs/git-rebase
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 62

git checkout topic
git rebase master # rebase topic branch on top of master branch

Whatever HEAD's pointing to is "ours"

The first thing a rebase does is resetting the HEAD to master; before cherry-picking commits from the old branch
topic to a new one (every commit in the former topic branch will be rewritten and will be identified by a different
hash).

With respect to terminologies used by merge tools (not to be confused with local ref or remote ref)

=> local is master ("ours"),
=> remote is topic ("theirs")

That means a merge/diff tool will present the upstream branch as local (master: the branch on top of which you
are rebasing), and the working branch as remote (topic: the branch being rebased)

+---+
| LOCAL:master | BASE | REMOTE:topic |
+---+
| MERGED |
+---+

Inversion illustrated
On a merge:

c--c--x--x--x(*) <- current branch topic ('*'=HEAD)
\
\
\--y--y--y <- other branch to merge

We don't change the current branch topic, so what we have is still what we were working on (and we merge from
another branch)

c--c--x--x--x---------o(*) MERGE, still on branch topic
\ ^ /
\ ours /
\ /
--y--y--y--/
^
theirs

On a rebase:

But on a rebase we switch sides because the first thing a rebase does is to checkout the upstream branch to replay
the current commits on top of it!

c--c--x--x--x(*) <- current branch topic ('*'=HEAD)
\
\
\--y--y--y <- upstream branch

https://git-scm.com/docs/gitglossary#gitglossary-aiddefrefspecarefspec
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 63

A git rebase upstream will first set HEAD to the upstream branch, hence the switch of 'ours' and 'theirs' compared
to the previous "current" working branch.

c--c--x--x--x <- former "current" branch, new "theirs"
\
\
\--y--y--y(*) <- set HEAD to this commit, to replay x's on it
^ this will be the new "ours"
|
upstream

The rebase will then replay 'their' commits on the new 'our' topic branch:

c--c..x..x..x <- old "theirs" commits, now "ghosts", available through "reflogs"
\
\
\--y--y--y--x'--x'--x'(*) <- topic once all x's are replayed,
^ point branch topic to this commit
|
upstream branch

Section 12.3: Interactive Rebase
This example aims to describe how one can utilize git rebase in interactive mode. It is expected that one has a
basic understanding of what git rebase is and what it does.

Interactive rebase is initiated using following command:

git rebase -i

The -i option refers to interactive mode. Using interactive rebase, the user can change commit messages, as well as
reorder, split, and/or squash (combine to one) commits.

Say you want to rearrange your last three commits. To do this you can run:

git rebase -i HEAD~3

After executing the above instruction, a file will be opened in your text editor where you will be able to select how
your commits will be rebased. For the purpose of this example, just change the order of your commits, save the file,
and close the editor. This will initiate a rebase with the order you've applied. If you check git log you will see your
commits in the new order you specified.

Rewording commit messages

Now, you've decided that one of the commit messages is vague and you want it to be more descriptive. Let's
examine the last three commits using the same command.

git rebase -i HEAD~3

Instead of rearranging the order the commits will be rebased, this time we will change pick, the default, to reword
on a commit where you would like to change the message.

When you close the editor, the rebase will initiate and it will stop at the specific commit message that you wanted to

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 64

reword. This will let you change the commit message to whichever you desire. After you've changed the message,
simply close the editor to proceed.

Changing the content of a commit

Besides changing the commit message you can also adapt the changes done by the commit. To do so just change
pick to edit for one commit. Git will stop when it arrives at that commit and provide the original changes of the
commit in the staging area. You can now adapt those changes by unstaging them or adding new changes.

As soon as the staging area contains all changes you want in that commit, commit the changes. The old commit
message will be shown and can be adapted to reflect the new commit.

Splitting a single commit into multiple

Say you've made a commit but decided at a later point this commit could be split into two or more commits instead.
Using the same command as before, replace pick with edit instead and hit enter.

Now, git will stop at the commit you have marked for editing and place all of its content into the staging area. From
that point you can run git reset HEAD^ to place the commit into your working directory. Then, you can add and
commit your files in a different sequence - ultimately splitting a single commit into n commits instead.

Squashing multiple commits into one

Say you have done some work and have multiple commits which you think could be a single commit instead. For
that you can carry out git rebase -i HEAD~3, replacing 3 with an appropriate amount of commits.

This time replace pick with squash instead. During the rebase, the commit which you've instructed to be squashed
will be squashed on top of the previous commit; turning them into a single commit instead.

Section 12.4: Rebase down to the initial commit
Since Git 1.7.12 it is possible to rebase down to the root commit. The root commit is the first commit ever made in a
repository, and normally cannot be edited. Use the following command:

git rebase -i --root

Section 12.5: Configuring autostash
Autostash is a very useful configuration option when using rebase for local changes. Oftentimes, you may need to
bring in commits from the upstream branch, but are not ready to commit just yet.

However, Git does not allow a rebase to start if the working directory is not clean. Autostash to the rescue:

git config --global rebase.autostash # one time configuration
git rebase @{u} # example rebase on upstream branch

The autostash will be applied whenever the rebase is finished. It does not matter whether the rebase finishes
successfully, or if it is aborted. Either way, the autostash will be applied. If the rebase was successful, and the base
commit therefore changed, then there may be a conflict between the autostash and the new commits. In this case,
you will have to resolve the conflicts before committing. This is no different than if you would have manually
stashed, and then applied, so there is no downside to doing it automatically.

https://github.com/git/git/blob/1d1bdafd64266e5ee3bd46c6965228f32e4022ea/Documentation/RelNotes/1.7.12.txt#L59-L60
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 65

Section 12.6: Testing all commits during rebase
Before making a pull request, it is useful to make sure that compile is successful and tests are passing for each
commit in the branch. We can do that automatically using -x parameter.

For example:

git rebase -i -x make

will perform the interactive rebase and stop after each commit to execute make. In case make fails, git will stop to
give you an opportunity to fix the issues and amend the commit before proceeding with picking the next one.

Section 12.7: Rebasing before a code review
Summary

This goal is to reorganize all of your scattered commits into more meaningful commits for easier code reviews. If
there are too many layers of changes across too many files at once, it is harder to do a code review. If you can
reorganize your chronologically created commits into topical commits, then the code review process is easier (and
possibly less bugs slip through the code review process).

This overly-simplified example is not the only strategy for using git to do better code reviews. It is the way I do it,
and it's something to inspire others to consider how to make code reviews and git history easier/better.

This also pedagogically demonstrates the power of rebase in general.

This example assumes you know about interactive rebasing.

Assuming:

you're working on a feature branch off of master
your feature has three main layers: front-end, back-end, DB
you have made a lot of commits while working on a feature branch. Each commit touches multiple layers at
once
you want (in the end) only three commits in your branch

one containing all front end changes
one containing all back end changes
one containing all DB changes

Strategy:

we are going to change our chronological commits into "topical" commits.
first, split all commits into multiple, smaller commits -- each containing only one topic at a time (in our
example, the topics are front end, back end, DB changes)
Then reorder our topical commits together and 'squash' them into single topical commits

Example:
$ git log --oneline master..
975430b db adding works: db.sql logic.rb
3702650 trying to allow adding todo items: page.html logic.rb
43b075a first draft: page.html and db.sql
$ git rebase -i master

This will be shown in text editor:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 66

pick 43b075a first draft: page.html and db.sql
pick 3702650 trying to allow adding todo items: page.html logic.rb
pick 975430b db adding works: db.sql logic.rb

Change it to this:

e 43b075a first draft: page.html and db.sql
e 3702650 trying to allow adding todo items: page.html logic.rb
e 975430b db adding works: db.sql logic.rb

Then git will apply one commit at a time. After each commit, it will show a prompt, and then you can do the
following:

Stopped at 43b075a92a952faf999e76c4e4d7fa0f44576579... first draft: page.html and db.sql
You can amend the commit now, with

 git commit --amend

Once you are satisfied with your changes, run

 git rebase --continue

$ git status
rebase in progress; onto 4975ae9
You are currently editing a commit while rebasing branch 'feature' on '4975ae9'.
 (use "git commit --amend" to amend the current commit)
 (use "git rebase --continue" once you are satisfied with your changes)

nothing to commit, working directory clean
$ git reset HEAD^ #This 'uncommits' all the changes in this commit.
$ git status -s
 M db.sql
 M page.html
$ git add db.sql #now we will create the smaller topical commits
$ git commit -m "first draft: db.sql"
$ git add page.html
$ git commit -m "first draft: page.html"
$ git rebase --continue

Then you will repeat those steps for every commit. In the end, you have this:

$ git log --oneline
0309336 db adding works: logic.rb
06f81c9 db adding works: db.sql
3264de2 adding todo items: page.html
675a02b adding todo items: logic.rb
272c674 first draft: page.html
08c275d first draft: db.sql

Now we run rebase one more time to reorder and squash:

$ git rebase -i master

This will be shown in text editor:

pick 08c275d first draft: db.sql
pick 272c674 first draft: page.html
pick 675a02b adding todo items: logic.rb

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 67

pick 3264de2 adding todo items: page.html
pick 06f81c9 db adding works: db.sql
pick 0309336 db adding works: logic.rb

Change it to this:

pick 08c275d first draft: db.sql
s 06f81c9 db adding works: db.sql
pick 675a02b adding todo items: logic.rb
s 0309336 db adding works: logic.rb
pick 272c674 first draft: page.html
s 3264de2 adding todo items: page.html

NOTICE: make sure that you tell git rebase to apply/squash the smaller topical commits in the order they were
chronologically commited. Otherwise you might have false, needless merge conflicts to deal with.

When that interactive rebase is all said and done, you get this:

$ git log --oneline master..
74bdd5f adding todos: GUI layer
e8d8f7e adding todos: business logic layer
121c578 adding todos: DB layer

Recap

You have now rebased your chronological commits into topical commits. In real life, you may not need to do this
every single time, but when you do want or need to do this, now you can. Plus, hopefully you learned more about
git rebase.

Section 12.8: Aborting an Interactive Rebase
You have started an interactive rebase. In the editor where you pick your commits, you decide that something is
going wrong (for example a commit is missing, or you chose the wrong rebase destination), and you want to abort
the rebase.

To do this, simply delete all commits and actions (i.e. all lines not starting with the # sign) and the rebase will be
aborted!

The help text in the editor actually provides this hint:

Rebase 36d15de..612f2f7 onto 36d15de (3 command(s))
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
^^
Note that empty commits are commented out

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 68

Section 12.9: Setup git-pull for automatically perform a
rebase instead of a merge
If your team is following a rebase-based workflow, it may be a advantageous to setup git so that each newly created
branch will perform a rebase operation, instead of a merge operation, during a git pull.

To setup every new branch to automatically rebase, add the following to your .gitconfig or .git/config:

[branch]
autosetuprebase = always

Command line: git config [--global] branch.autosetuprebase always

Alternatively, you can setup the git pull command to always behave as if the option --rebase was passed:

[pull]
rebase = true

Command line: git config [--global] pull.rebase true

Section 12.10: Pushing after a rebase
Sometimes you need rewrite history with a rebase, but git push complains about doing so because you rewrote
history.

This can be solved with a git push --force, but consider git push --force-with-lease, indicating that you want
the push to fail if the local remote-tracking branch differs from the branch on the remote, e.g., someone else
pushed to the remote after the last fetch. This avoids inadvertently overwriting someone else's recent push.

Note: git push --force - and even --force-with-lease for that matter - can be a dangerous command because
it rewrites the history of the branch. If another person had pulled the branch before the forced push, his/her git
pull or git fetch will have errors because the local history and the remote history are diverged. This may cause
the person to have unexpected errors. With enough looking at the reflogs the other user's work can be recovered,
but it can lead to a lot of wasted time. If you must do a forced push to a branch with other contributors, try to
coordinate with them so that they do not have to deal with errors.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 69

Chapter 13: Configuration
Parameter Details

--system Edits the system-wide configuration file, which is used for every user (on Linux, this file is located at
$(prefix)/etc/gitconfig)

--global Edits the global configuration file, which is used for every repository you work on (on Linux, this file is
located at ~/.gitconfig

--local Edits the respository-specific configuration file, which is located at .git/config in your repository; this
is the default setting

Section 13.1: Setting which editor to use
There are several ways to set which editor to use for committing, rebasing, etc.

Change the core.editor configuration setting.

$ git config --global core.editor nano

Set the GIT_EDITOR environment variable.

For one command:

$ GIT_EDITOR=nano git commit

Or for all commands run in a terminal. Note: This only applies until you close the terminal.

$ export GIT_EDITOR=nano

To change the editor for all terminal programs, not just Git, set the VISUAL or EDITOR environment variable.
(See VISUAL vs EDITOR.)

$ export EDITOR=nano

Note: As above, this only applies to the current terminal; your shell will usually have a configuration file to
allow you to set it permanently. (On bash, for example, add the above line to your ~/.bashrc or
~/.bash_profile.)

Some text editors (mostly GUI ones) will only run one instance at a time, and generally quit if you already have an
instance of them open. If this is the case for your text editor, Git will print the message Aborting commit due to
empty commit message. without allowing you to edit the commit message first. If this happens to you, consult your
text editor's documentation to see if it has a --wait flag (or similar) that will make it pause until the document is
closed.

Section 13.2: Auto correct typos
git config --global help.autocorrect 17

This enables autocorrect in git and will forgive you for your minor mistakes (e.g. git stats instead of git status).
The parameter you supply to help.autocorrect determines how long the system should wait, in tenths of a
second, before automatically applying the autocorrected command. In the command above, 17 means that git

https://unix.stackexchange.com/questions/4859/visual-vs-editor-whats-the-difference
https://unix.stackexchange.com/questions/4859/visual-vs-editor-whats-the-difference
https://unix.stackexchange.com/questions/4859/visual-vs-editor-whats-the-difference
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 70

should wait 1.7 seconds before applying the autocorrected command.

However, bigger mistakes will be considered as missing commands, so typing something like git testingit would
result in testingit is not a git command.

Section 13.3: List and edit the current configuration
Git config allows you to customize how git works. It is commonly used to set your name and email or favorite editor
or how merges should be done.

To see the current configuration.

$ git config --list
...
core.editor=vim
credential.helper=osxkeychain
...

To edit the config:

$ git config <key> <value>
$ git config core.ignorecase true

If you intend the change to be true for all your repositories, use --global

$ git config --global user.name "Your Name"
$ git config --global user.email "Your Email"
$ git config --global core.editor vi

You can list again to see your changes.

Section 13.4: Username and email address
Right after you install Git, the first thing you should do is set your username and email address. From a shell, type:

git config --global user.name "Mr. Bean"
git config --global user.email mrbean@example.com

git config is the command to get or set options
--global means that the configuration file specific to your user account will be edited
user.name and user.email are the keys for the configuration variables; user is the section of the
configuration file. name and email are the names of the variables.
"Mr. Bean" and mrbean@example.com are the values that you're storing in the two variables. Note the quotes
around "Mr. Bean", which are required because the value you are storing contains a space.

Section 13.5: Multiple usernames and email address
Since Git 2.13, multiple usernames and email addresses could be configured by using a folder filter.

Example for Windows:
.gitconfig

Edit: git config --global -e

Add:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 71

[includeIf "gitdir:D:/work"]
 path = .gitconfig-work.config

[includeIf "gitdir:D:/opensource/"]
 path = .gitconfig-opensource.config

Notes

The order is depended, the last one who matches "wins".
the / at the end is needed - e.g. "gitdir:D:/work" won't work.
the gitdir: prefix is required.

.gitconfig-work.config

File in the same directory as .gitconfig

[user]
 name = Money
 email = work@somewhere.com

.gitconfig-opensource.config

File in the same directory as .gitconfig

[user]
 name = Nice
 email = cool@opensource.stuff

Example for Linux
[includeIf "gitdir:~/work/"]
 path = .gitconfig-work
[includeIf "gitdir:~/opensource/"]
 path = .gitconfig-opensource

The file content and notes under section Windows.

Section 13.6: Multiple git configurations
You have up to 5 sources for git configuration:

6 files:
%ALLUSERSPROFILE%\Git\Config (Windows only)
(system) <git>/etc/gitconfig, with <git> being the git installation path.
(on Windows, it is <git>\mingw64\etc\gitconfig)
(system) $XDG_CONFIG_HOME/git/config (Linux/Mac only)
(global) ~/.gitconfig (Windows: %USERPROFILE%\.gitconfig)
(local) .git/config (within a git repo $GIT_DIR)
a dedicated file (with git config -f), used for instance to modify the config of submodules: git
config -f .gitmodules ...

the command line with git -c: git -c core.autocrlf=false fetch would override any other
core.autocrlf to false, just for that fetch command.

The order is important: any config set in one source can be overridden by a source listed below it.

git config --system/global/local is the command to list 3 of those sources, but only git config -l would list all
resolved configs.
"resolved" means it lists only the final overridden config value.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 72

Since git 2.8, if you want to see which config comes from which file, you type:

git config --list --show-origin

Section 13.7: Configuring line endings
Description

When working with a team who uses different operating systems (OS) across the project, sometimes you may run
into trouble when dealing with line endings.

Microsoft Windows

When working on Microsoft Windows operating system (OS), the line endings are normally of form - carriage return
+ line feed (CR+LF). Opening a file which has been edited using Unix machine such as Linux or OSX may cause
trouble, making it seem that text has no line endings at all. This is due to the fact that Unix systems apply different
line-endings of form line feeds (LF) only.

In order to fix this you can run following instruction

git config --global core.autocrlf=true

On checkout, This instruction will ensure line-endings are configured in accordance with Microsoft Windows OS (LF
-> CR+LF)

Unix Based (Linux/OSX)

Similarly, there might be issues when the user on Unix based OS tries to read files which have been edited on
Microsoft Windows OS. In order to prevent any unexpected issues run

git config --global core.autocrlf=input

On commit, this will change line-endings from CR+LF -> +LF

Section 13.8: configuration for one command only
you can use -c <name>=<value> to add a configuration only for one command.

To commit as an other user without having to change your settings in .gitconfig :

git -c user.email = mail@example commit -m "some message"

Note: for that example you don't need to precise both user.name and user.email, git will complete the missing
information from the previous commits.

Section 13.9: Setup a proxy
If you are behind a proxy, you have to tell git about it:

git config --global http.proxy http://my.proxy.com:portnumber

If you are no more behind a proxy:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 73

git config --global --unset http.proxy

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 74

Chapter 14: Branching
Parameter Details

-d, --delete Delete a branch. The branch must be fully merged in its upstream branch, or in HEAD if no upstream
was set with --track or --set-upstream

-D Shortcut for --delete --force

-m, --move Move/rename a branch and the corresponding reflog

-M Shortcut for --move --force

-r, --remotes List or delete (if used with -d) the remote-tracking branches

-a, --all List both remote-tracking branches and local branches

--list Activate the list mode. git branch <pattern> would try to create a branch, use git branch --
list <pattern> to list matching branches

--set-upstream
If specified branch does not exist yet or if --force has been given, acts exactly like --track.
Otherwise sets up configuration like --track would when creating the branch, except that where
branch points to is not changed

Section 14.1: Creating and checking out new branches
To create a new branch, while staying on the current branch, use:

git branch <name>

Generally, the branch name must not contain spaces and is subject to other specifications listed here. To switch to
an existing branch :

git checkout <name>

To create a new branch and switch to it:

git checkout -b <name>

To create a branch at a point other than the last commit of the current branch (also known as HEAD), use either of
these commands:

git branch <name> [<start-point>]
git checkout -b <name> [<start-point>]

The <start-point> can be any revision known to git (e.g. another branch name, commit SHA, or a symbolic
reference such as HEAD or a tag name):

git checkout -b <name> some_other_branch
git checkout -b <name> af295
git checkout -b <name> HEAD~5
git checkout -b <name> v1.0.5

To create a branch from a remote branch (the default <remote_name> is origin):

git branch <name> <remote_name>/<branch_name>
git checkout -b <name> <remote_name>/<branch_name>

If a given branch name is only found on one remote, you can simply use

http://stackoverflow.com/questions/3651860/which-characters-are-illegal-within-a-branch-name
https://git-scm.com/docs/revisions
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 75

git checkout -b <branch_name>

which is equivalent to

git checkout -b <branch_name> <remote_name>/<branch_name>

Sometimes you may need to move several of your recent commits to a new branch. This can be achieved by
branching and "rolling back", like so:

git branch <new_name>
git reset --hard HEAD~2 # Go back 2 commits, you will lose uncommitted work.
git checkout <new_name>

Here is an illustrative explanation of this technique:

 Initial state After git branch <new_name> After git reset --hard HEAD~2
 newBranch newBranch
 ↓ ↓
A-B-C-D-E (HEAD) A-B-C-D-E (HEAD) A-B-C-D-E (HEAD)
 ↑ ↑ ↑
 master master master

Section 14.2: Listing branches
Git provides multiple commands for listing branches. All commands use the function of git branch, which will
provide a list of a certain branches, depending on which options are put on the command line. Git will if possible,
indicate the currently selected branch with a star next to it.

Goal Command
List local branches git branch

List local branches verbose git branch -v

List remote and local branches git branch -a OR git branch --all

List remote and local branches (verbose) git branch -av

List remote branches git branch -r

List remote branches with latest commit git branch -rv

List merged branches git branch --merged

List unmerged branches git branch --no-merged

List branches containing commit git branch --contains [<commit>]

Notes:

Adding an additional v to -v e.g. $ git branch -avv or $ git branch -vv will print the name of the
upstream branch as well.
Branches shown in red color are remote branches

Section 14.3: Delete a remote branch
To delete a branch on the origin remote repository, you can use for Git version 1.5.0 and newer

git push origin :<branchName>

and as of Git version 1.7.0, you can delete a remote branch using

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 76

git push origin --delete <branchName>

To delete a local remote-tracking branch:

git branch --delete --remotes <remote>/<branch>
git branch -dr <remote>/<branch> # Shorter

git fetch <remote> --prune # Delete multiple obsolete tracking branches
git fetch <remote> -p # Shorter

To delete a branch locally. Note that this will not delete the branch if it has any unmerged changes:

git branch -d <branchName>

To delete a branch, even if it has unmerged changes:

git branch -D <branchName>

Section 14.4: Quick switch to the previous branch
You can quickly switch to the previous branch using

git checkout -

Section 14.5: Check out a new branch tracking a remote
branch
There are three ways of creating a new branch feature which tracks the remote branch origin/feature:

git checkout --track -b feature origin/feature,
git checkout -t origin/feature,
git checkout feature - assuming that there is no local feature branch and there is only one remote with
the feature branch.

To set upstream to track the remote branch - type:

git branch --set-upstream-to=<remote>/<branch> <branch>

git branch -u <remote>/<branch> <branch>

where:

<remote> can be: origin, develop or the one created by user,
<branch> is user's branch to track on remote.

To verify which remote branches your local branches are tracking:

git branch -vv

Section 14.6: Delete a branch locally
$ git branch -d dev

Deletes the branch named dev if its changes are merged with another branch and will not be lost. If the dev branch
does contain changes that have not yet been merged that would be lost, git branch -d will fail:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 77

$ git branch -d dev
error: The branch 'dev' is not fully merged.
If you are sure you want to delete it, run 'git branch -D dev'.

Per the warning message, you can force delete the branch (and lose any unmerged changes in that branch) by
using the -D flag:

$ git branch -D dev

Section 14.7: Create an orphan branch (i.e. branch with no
parent commit)
git checkout --orphan new-orphan-branch

The first commit made on this new branch will have no parents and it will be the root of a new history
totally disconnected from all the other branches and commits.

source

Section 14.8: Rename a branch
Rename the branch you have checked out:

git branch -m new_branch_name

Rename another branch:

git branch -m branch_you_want_to_rename new_branch_name

Section 14.9: Searching in branches
To list local branches that contain a specific commit or tag

git branch --contains <commit>

To list local and remote branches that contain a specific commit or tag

git branch -a --contains <commit>

Section 14.10: Push branch to remote
Use to push commits made on your local branch to a remote repository.

The git push command takes two arguments:

A remote name, for example, origin
A branch name, for example, master

For example:

git push <REMOTENAME> <BRANCHNAME>

https://git-scm.com/docs/git-checkout
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 78

As an example, you usually run git push origin master to push your local changes to your online repository.

Using -u (short for --set-upstream) will set up the tracking information during the push.

git push -u <REMOTENAME> <BRANCHNAME>

By default, git pushes the local branch to a remote branch with the same name. For example, if you have a local
called new-feature, if you push the local branch it will create a remote branch new-feature as well. If you want to
use a different name for the remote branch, append the remote name after the local branch name, separated by ::

git push <REMOTENAME> <LOCALBRANCHNAME>:<REMOTEBRANCHNAME>

Section 14.11: Move current branch HEAD to an arbitrary
commit
A branch is just a pointer to a commit, so you can freely move it around. To make it so that the branch is referring
to the commit aabbcc, issue the command

git reset --hard aabbcc

Please note that this will overwrite your branch's current commit, and as so, its entire history. You might loose
some work by issuing this command. If that's the case, you can use the reflog to recover the lost commits. It can be
advised to perform this command on a new branch instead of your current one.

However, this command can be particularly useful when rebasing or doing such other large history modifications.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 79

Chapter 15: Rev-List
Parameter Details
--oneline Display commits as a single line with their title.

Section 15.1: List Commits in master but not in origin/master
git rev-list --oneline master ^origin/master

Git rev-list will list commits in one branch that are not in another branch. It is a great tool when you're trying to
figure out if code has been merged into a branch or not.

Using the --oneline option will display the title of each commit.
The ^ operator excludes commits in the specified branch from the list.
You can pass more than two branches if you want. For example, git rev-list foo bar ^baz lists commits
in foo and bar, but not baz.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 80

Chapter 16: Squashing
Section 16.1: Squash Recent Commits Without Rebasing
If you want to squash the previous x commits into a single one, you can use the following commands:

git reset --soft HEAD~x
git commit

Replacing x with the number of previous commits you want to be included in the squashed commit.

Mind that this will create a new commit, essentially forgetting information about the previous x commits including
their author, message and date. You probably want to first copy-paste an existing commit message.

Section 16.2: Squashing Commit During Merge
You can use git merge --squash to squash changes introduced by a branch into a single commit. No actual
commit will be created.

git merge --squash <branch>
git commit

This is more or less equivalent to using git reset, but is more convenient when changes being incorporated have a
symbolic name. Compare:

git checkout <branch>
git reset --soft $(git merge-base master <branch>)
git commit

Section 16.3: Squashing Commits During a Rebase
Commits can be squashed during a git rebase. It is recommended that you understand rebasing before
attempting to squash commits in this fashion.

Determine which commit you would like to rebase from, and note its commit hash.1.

Run git rebase -i [commit hash].2.

Alternatively, you can type HEAD~4 instead of a commit hash, to view the latest commit and 4 more commits
before the latest one.

In the editor that opens when running this command, determine which commits you want to squash.3.
Replace pick at the beginning of those lines with squash to squash them into the previous commit.

After selecting which commits you would like to squash, you will be prompted to write a commit message.4.

Logging Commits to determine where to rebase

> git log --oneline
612f2f7 This commit should not be squashed
d84b05d This commit should be squashed
ac60234 Yet another commit
36d15de Rebase from here

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 81

17692d1 Did some more stuff
e647334 Another Commit
2e30df6 Initial commit

> git rebase -i 36d15de

At this point your editor of choice pops up where you can describe what you want to do with the commits. Git
provides help in the comments. If you leave it as is then nothing will happen because every commit will be kept and
their order will be the same as they were before the rebase. In this example we apply the following commands:

pick ac60234 Yet another commit
squash d84b05d This commit should be squashed
pick 612f2f7 This commit should not be squashed

Rebase 36d15de..612f2f7 onto 36d15de (3 command(s))
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
#
Note that empty commits are commented out

Git log after writing commit message

> git log --oneline
77393eb This commit should not be squashed
e090a8c Yet another commit
36d15de Rebase from here
17692d1 Did some more stuff
e647334 Another Commit
2e30df6 Initial commit

Section 16.4: Autosquashing and fixups
When committing changes it is possible to specify that the commit will in future be squashed to another commit
and this can be done like so,

git commit --squash=[commit hash of commit to which this commit will be squashed to]

One might also use, --fixup=[commit hash] alternatively to fixup.

It is also possible to use words from the commit message instead of the commit hash, like so,

git commit --squash :/things

where the most recent commit with the word 'things' would be used.

These commits' message would begin with 'fixup!' or 'squash!' followed by the rest of the commit message to
which these commits will be squashed to.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 82

When rebasing --autosquash flag should be used to use the autosquash/fixup feature.

Section 16.5: Autosquash: Committing code you want to
squash during a rebase
Given the following history, imagine you make a change that you want to squash into the commit bbb2222 A
second commit:

$ git log --oneline --decorate
ccc3333 (HEAD -> master) A third commit
bbb2222 A second commit
aaa1111 A first commit
9999999 Initial commit

Once you've made your changes, you can add them to the index as usual, then commit them using the --fixup
argument with a reference to the commit you want to squash into:

$ git add .
$ git commit --fixup bbb2222
[my-feature-branch ddd4444] fixup! A second commit

This will create a new commit with a commit message that Git can recognize during an interactive rebase:

$ git log --oneline --decorate
ddd4444 (HEAD -> master) fixup! A second commit
ccc3333 A third commit
bbb2222 A second commit
aaa1111 A first commit
9999999 Initial commit

Next, do an interactive rebase with the --autosquash argument:

$ git rebase --autosquash --interactive HEAD~4

Git will propose you to squash the commit you made with the commit --fixup into the correct position:

pick aaa1111 A first commit
pick bbb2222 A second commit
fixup ddd4444 fixup! A second commit
pick ccc3333 A third commit

To avoid having to type --autosquash on every rebase, you can enable this option by default:

$ git config --global rebase.autosquash true

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 83

Chapter 17: Cherry Picking
Parameters Details
-e, --edit With this option, git cherry-pick will let you edit the commit message prior to committing.

-x
When recording the commit, append a line that says "(cherry picked from commit …​)" to the original
commit message in order to indicate which commit this change was cherry-picked from. This is done
only for cherry picks without conflicts.

--ff If the current HEAD is the same as the parent of the cherry-pick’ed commit, then a fast forward to this
commit will be performed.

--continue Continue the operation in progress using the information in .git/sequencer. Can be used to continue
after resolving conflicts in a failed cherry-pick or revert.

--quit Forget about the current operation in progress. Can be used to clear the sequencer state after a failed
cherry-pick or revert.

--abort Cancel the operation and return to the pre-sequence state.

A cherry-pick takes the patch that was introduced in a commit and tries to reapply it on the branch you’re currently
on.

Source: Git SCM Book

Section 17.1: Copying a commit from one branch to another
git cherry-pick <commit-hash> will apply the changes made in an existing commit to another branch, while
recording a new commit. Essentially, you can copy commits from branch to branch.

Given the following tree (Source)

dd2e86 - 946992 - 9143a9 - a6fd86 - 5a6057 [master]
 \
 76cada - 62ecb3 - b886a0 [feature]

Let's say we want to copy b886a0 to master (on top of 5a6057).

We can run

git checkout master
git cherry-pick b886a0

Now our tree will look something like:

dd2e86 - 946992 - 9143a9 - a6fd86 - 5a6057 - a66b23 [master]
 \
 76cada - 62ecb3 - b886a0 [feature]

Where the new commit a66b23 has the same content (source diff, commit message) as b886a0 (but a different
parent). Note that cherry-picking will only pick up changes on that commit(b886a0 in this case) not all the changes in
feature branch (for this you will have to either use rebasing or merging).

Section 17.2: Copying a range of commits from one branch to
another
git cherry-pick <commit-A>..<commit-B> will place every commit after A and up to and including B on top of the
currently checked-out branch.

https://git-scm.com/book/en/v2/Distributed-Git-Maintaining-a-Project
https://ariejan.net/2010/06/10/cherry-picking-specific-commits-from-another-branch/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 84

git cherry-pick <commit-A>^..<commit-B> will place commit A and every commit up to and including B on top of
the currently checked-out branch.

Section 17.3: Checking if a cherry-pick is required
Before you start the cherry-pick process, you can check if the commit you want to cherry-pick already exists in the
target branch, in which case you don't have to do anything.

git branch --contains <commit> lists local branches that contain the specified commit.

git branch -r --contains <commit> also includes remote tracking branches in the list.

Section 17.4: Find commits yet to be applied to upstream
Command git cherry shows the changes which haven't yet been cherry-picked.

Example:

git checkout master
git cherry development

... and see output a bit like this:

+ 492508acab7b454eee8b805f8ba906056eede0ff
- 5ceb5a9077ddb9e78b1e8f24bfc70e674c627949
+ b4459544c000f4d51d1ec23f279d9cdb19c1d32b
+ b6ce3b78e938644a293b2dd2a15b2fecb1b54cd9

The commits that being with + will be the ones that haven't yet cherry-picked into development.

Syntax:

git cherry [-v] [<upstream> [<head> [<limit>]]]

Options:

-v Show the commit subjects next to the SHA1s.

< upstream > Upstream branch to search for equivalent commits. Defaults to the upstream branch of HEAD.

< head > Working branch; defaults to HEAD.

< limit > Do not report commits up to (and including) limit.

Check git-cherry documentation for more info.

https://git-scm.com/docs/git-cherry
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 85

Chapter 18: Recovering
Section 18.1: Recovering from a reset
With Git, you can (almost) always turn the clock back

Don't be afraid to experiment with commands that rewrite history*. Git doesn't delete your commits for 90 days by
default, and during that time you can easily recover them from the reflog:

$ git reset @~3 # go back 3 commits
$ git reflog
c4f708b HEAD@{0}: reset: moving to @~3
2c52489 HEAD@{1}: commit: more changes
4a5246d HEAD@{2}: commit: make important changes
e8571e4 HEAD@{3}: commit: make some changes
... earlier commits ...
$ git reset 2c52489
... and you're back where you started

* Watch out for options like --hard and --force though — they can discard data.
* Also, avoid rewriting history on any branches you're collaborating on.

Section 18.2: Recover from git stash
To get your most recent stash after running git stash, use

git stash apply

To see a list of your stashes, use

git stash list

You will get a list that looks something like this

stash@{0}: WIP on master: 67a4e01 Merge tests into develop
stash@{1}: WIP on master: 70f0d95 Add user role to localStorage on user login

Choose a different git stash to restore with the number that shows up for the stash you want

git stash apply stash@{2}

You can also choose 'git stash pop', it works same as 'git stash apply' like..

 git stash pop

or

 git stash pop stash@{2}

Difference in git stash apply and git stash pop...

git stash pop: stash data will be remove from stack of stash list.

Ex:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 86

git stash list

You will get a list that looks something like this

stash@{0}: WIP on master: 67a4e01 Merge tests into develop
stash@{1}: WIP on master: 70f0d95 Add user role to localStorage on user login

Now pop stash data using command

git stash pop

Again Check for stash list

git stash list

You will get a list that looks something like this

 stash@{0}: WIP on master: 70f0d95 Add user role to localStorage on user login

You can see one stash data is removed (popped) from stash list and stash@{1} became stash@{0}.

Section 18.3: Recovering from a lost commit
In case you have reverted back to a past commit and lost a newer commit you can recover the lost commit by
running

git reflog

Then find your lost commit, and reset back to it by doing

git reset HEAD --hard <sha1-of-commit>

Section 18.4: Restore a deleted file after a commit
In case you have accidentally commited a delete on a file and later realized that you need it back.

First find the commit id of the commit that deleted your file.

git log --diff-filter=D --summary

Will give you a sorted summary of commits which deleted files.

Then proceed to restore the file by

git checkout 81eeccf~1 <your-lost-file-name>

(Replace 81eeccf with your own commit id)

Section 18.5: Restore file to a previous version
To restore a file to a previous version you can use reset.

git reset <sha1-of-commit> <file-name>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 87

If you have already made local changes to the file (that you do not require!) you can also use the --hard option

Section 18.6: Recover a deleted branch
To recover a deleted branch you need to find the commit which was the head of your deleted branch by running

git reflog

You can then recreate the branch by running

git checkout -b <branch-name> <sha1-of-commit>

You will not be able to recover deleted branches if git's garbage collector deleted dangling commits - those without
refs. Always have a backup of your repository, especially when you work in a small team / proprietary project

https://git-scm.com/docs/git-gc
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 88

Chapter 19: Git Clean
Parameter Details

-d
Remove untracked directories in addition to untracked files. If an untracked directory is managed by
a different Git repository, it is not removed by default. Use -f option twice if you really want to
remove such a directory.

-f, --force
If the Git configuration variable clean. requireForce is not set to false, git clean will refuse to delete
files or directories unless given -f, -n or -i. Git will refuse to delete directories with .git sub directory
or file unless a second -f is given.

-i, --interactive Interactively prompts the removal of each file.

-n, --dry-run Only displays a list of files to be removed, without actually removing them.

-q,--quiet Only display errors, not the list of successfully removed files.

Section 19.1: Clean Interactively
git clean -i

Will print out items to be removed and ask for a confirmation via commands like the follow:

Would remove the following items:
folder/file1.py
folder/file2.py
*** Commands ***
1: clean 2: filter by pattern 3: select by numbers 4: ask each
5: quit 6: help
What now>

Interactive option i can be added along with other options like X, d, etc.

Section 19.2: Forcefully remove untracked files
git clean -f

Will remove all untracked files.

Section 19.3: Clean Ignored Files
git clean -fX

Will remove all ignored files from the current directory and all subdirectories.

git clean -Xn

Will preview all files that will be cleaned.

Section 19.4: Clean All Untracked Directories
git clean -fd

Will remove all untracked directories and the files within them. It will start at the current working directory and will
iterate through all subdirectories.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 89

git clean -dn

Will preview all directories that will be cleaned.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 90

Chapter 20: Using a .gitattributes file
Section 20.1: Automatic Line Ending Normalization
Create a .gitattributes file in the project root containing:

* text=auto

This will result in all text files (as identified by Git) being committed with LF, but checked out according to the host
operating system default.

This is equivalent to the recommended core.autocrlf defaults of:

input on Linux/macOS
true on Windows

Section 20.2: Identify Binary Files
Git is pretty good at identifying binary files, but you can explicitly specify which files are binary. Create a
.gitattributes file in the project root containing:

*.png binary

binary is a built-in macro attribute equivalent to -diff -merge -text.

Section 20.3: Prefilled .gitattribute Templates
If you are unsure which rules to list in your .gitattributes file, or you just want to add generally accepted
attributes to your project, you can shoose or generate a .gitattributes file at:

https://gitattributes.io/
https://github.com/alexkaratarakis/gitattributes

Section 20.4: Disable Line Ending Normalization
Create a .gitattributes file in the project root containing:

* -text

This is equivalent to setting core.autocrlf = false.

https://gitattributes.io/
https://github.com/alexkaratarakis/gitattributes
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 91

Chapter 21: .mailmap file: Associating
contributor and email aliases
Section 21.1: Merge contributers by aliases to show commit
count in shortlog
When contributors add to a project from different machines or operating systems, it may happen that they use
different email addresses or names for this, which will fragment contributor lists and statistics.

Running git shortlog -sn to get a list of contributors and the number of commits by them could result in the
following output:

Patrick Rothfuss 871
Elizabeth Moon 762
E. Moon 184
Rothfuss, Patrick 90

This fragmentation/disassociation may be adjusted by providing a plain text file .mailmap, containing email
mappings.

All names and email addresses listed in one line will be associated to the first named entity respectively.

For the example above, a mapping could look like this:

Patrick Rothfuss <fussy@kingkiller.com> Rothfuss, Patrick <fussy@kingkiller.com>
Elizabeth Moon <emoon@marines.mil> E. Moon <emoon@scifi.org>

Once this file exists in the project's root, running git shortlog -sn again will result in a condensed list:

Patrick Rothfuss 961
Elizabeth Moon 946

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 92

Chapter 22: Analyzing types of workflows
Section 22.1: Centralized Workflow
With this fundamental workflow model, a master branch contains all active development. Contributors will need to
be especially sure they pull the latest changes before continuing development, for this branch will be changing
rapidly. Everyone has access to this repo and can commit changes right to the master branch.

Visual representation of this model:

This is the classic version control paradigm, upon which older systems like Subversion and CVS were built.
Softwares that work this way are called Centralized Version Control Systems, or CVCS's. While Git is capable of
working this way, there are notable disadvantages, such as being required to precede every pull with a merge. It's
very possible for a team to work this way, but the constant merge conflict resolution can end up eating a lot of
valuable time.

This is why Linus Torvalds created Git not as a CVCS, but rather as a DVCS, or Distributed Version Control System,
similar to Mercurial. The advantage to this new way of doing things is the flexibility demonstrated in the other
examples on this page.

https://i.stack.imgur.com/dAYXB.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 93

Section 22.2: Gitflow Workflow
Originally proposed by Vincent Driessen, Gitflow is a development workflow using git and several pre-defined
branches. This can seen as a special case of the Feature Branch Workflow.

The idea of this one is to have separate branches reserved for specific parts in development:

master branch is always the most recent production code. Experimental code does not belong here.
develop branch contains all of the latest development. These developmental changes can be pretty much
anything, but larger features are reserved for their own branches. Code here is always worked on and
merged into release before release / deployment.
hotfix branches are for minor bug fixes, which cannot wait until the next release. hotfix branches come off
of master and are merged back into both master and develop.
release branches are used to release new development from develop to master. Any last minute changes,
such as bumping version numbers, are done in the release branch, and then are merged back into master
and develop. When deploying a new version, master should be tagged with the current version number (e.g.
using semantic versioning) for future reference and easy rollback.
feature branches are reserved for bigger features. These are specifically developed in designated branches
and integrated with develop when finished. Dedicated feature branches help to separate development and
to be able to deploy done features independently from each other.

A visual representation of this model:

The original representation of this model:

http://nvie.com/posts/a-successful-git-branching-model/
http://semver.org/
http://i.stack.imgur.com/TBHkD.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 94

http://i.stack.imgur.com/RGIng.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 95

Section 22.3: Feature Branch Workflow
The core idea behind the Feature Branch Workflow is that all feature development should take place in a dedicated
branch instead of the master branch. This encapsulation makes it easy for multiple developers to work on a
particular feature without disturbing the main codebase. It also means the master branch will never contain broken
code, which is a huge advantage for continuous integration environments.

Encapsulating feature development also makes it possible to leverage pull requests, which are a way to initiate
discussions around a branch. They give other developers the opportunity to sign off on a feature before it gets
integrated into the official project. Or, if you get stuck in the middle of a feature, you can open a pull request asking
for suggestions from your colleagues. The point is, pull requests make it incredibly easy for your team to comment
on each other’s work.

based on Atlassian Tutorials.

Section 22.4: GitHub Flow
Popular within many open source projects but not only.

Master branch of a specific location (Github, Gitlab, Bitbucket, local server) contains the latest shippable version.
For each new feature/bug fix/architectural change each developer creates a branch.

Changes happen on that branch and can be discussed in a pull request, code review, etc. Once accepted they get
merged to the master branch.

Full flow by Scott Chacon:

Anything in the master branch is deployable
To work on something new, create a descriptively named branch off of master (ie: new-oauth2-scopes)
Commit to that branch locally and regularly push your work to the same named branch on the server
When you need feedback or help, or you think the branch is ready for merging, open a pull request
After someone else has reviewed and signed off on the feature, you can merge it into master
Once it is merged and pushed to ‘master’, you can and should deploy immediately

Originally presented on Scott Chacon's personal web site.

Image courtesy of the GitHub Flow reference

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
http://scottchacon.com/2011/08/31/github-flow.html
http://i.stack.imgur.com/KoMdO.png
https://guides.github.com/introduction/flow/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 96

Section 22.5: Forking Workflow
This type of workflow is fundamentally different than the other ones mentioned on this topic. Instead of having one
centralized repo that all developers have access to, each developer has his/her own repo that is forked from the
main repo. The advantage of this is that developers can post to their own repos rather than a shared repo and a
maintainer can integrate the changes from the forked repos into the original whenever appropriate.

A visual representation of this workflow is as follows:

http://i.stack.imgur.com/FAI5q.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 97

Chapter 23: Pulling
Parameters Details

--quiet No text output
-q shorthand for --quiet

--verbose verbose text output. Passed to fetch and merge/rebase
commands respectively.

-v shorthand for --verbose

--[no-]recurse-submodules[=yes|on-demand|no] Fetch new commits for submodules? (Not that this is not a
pull/checkout)

Unlike pushing with Git where your local changes are sent to the central repository's server, pulling with Git takes
the current code on the server and 'pulls' it down from the repository's server to your local machine. This topic
explains the process of pulling code from a repository using Git as well as the situations one might encounter while
pulling different code into the local copy.

Section 23.1: Pulling changes to a local repository
Simple pull

When you are working on a remote repository (say, GitHub) with someone else, you will at some point want to
share your changes with them. Once they have pushed their changes to a remote repository, you can retrieve those
changes by pulling from this repository.

git pull

Will do it, in the majority of cases.

Pull from a different remote or branch

You can pull changes from a different remote or branch by specifying their names

git pull origin feature-A

Will pull the branch feature-A form origin into your local branch. Note that you can directly supply an URL instead
of a remote name, and an object name such as a commit SHA instead of a branch name.

Manual pull

To imitate the behavior of a git pull, you can use git fetch then git merge

git fetch origin # retrieve objects and update refs from origin
git merge origin/feature-A # actually perform the merge

This can give you more control, and allows you to inspect the remote branch before merging it. Indeed, after
fetching, you can see the remote branches with git branch -a, and check them out with

git checkout -b local-branch-name origin/feature-A # checkout the remote branch
inspect the branch, make commits, squash, ammend or whatever
git checkout merging-branches # moving to the destination branch

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 98

git merge local-branch-name # performing the merge

This can be very handy when processing pull requests.

Section 23.2: Updating with local changes
When local changes are present, the git pull command aborts reporting :

error: Your local changes to the following files would be overwritten by merge

In order to update (like svn update did with subversion), you can run :

git stash
git pull --rebase
git stash pop

A convenient way could be to define an alias using :

Version < 2.9

git config --global alias.up '!git stash && git pull --rebase && git stash pop'
Version ≥ 2.9

git config --global alias.up 'pull --rebase --autostash'

Next you can simply use :

git up

Section 23.3: Pull, overwrite local
git fetch
git reset --hard origin/master

Beware: While commits discarded using reset --hard can be recovered using reflog and reset, uncommitted
changes are deleted forever.

Change origin and master to the remote and branch you want to forcibly pull to, respectively, if they are named
differently.

Section 23.4: Pull code from remote
git pull

Section 23.5: Keeping linear history when pulling
Rebasing when pulling

If you are pulling in fresh commits from the remote repository and you have local changes on the current branch
then git will automatically merge the remote version and your version. If you would like to reduce the number of
merges on your branch you can tell git to rebase your commits on the remote version of the branch.

git pull --rebase

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 99

Making it the default behavior

To make this the default behavior for newly created branches, type the following command:

git config branch.autosetuprebase always

To change the behavior of an existing branch, use this:

git config branch.BRANCH_NAME.rebase true

And

git pull --no-rebase

To perform a normal merging pull.

Check if fast-forwardable

To only allow fast forwarding the local branch, you can use:

git pull --ff-only

This will display an error when the local branch is not fast-forwardable, and needs to be either rebased or merged
with upstream.

Section 23.6: Pull, "permission denied"
Some problems can occur if the .git folder has wrong permission. Fixing this problem by setting the owner of the
complete .git folder. Sometimes it happen that another user pull and change the rights of the .git folder or files.

To fix the problem:

chown -R youruser:yourgroup .git/

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 100

Chapter 24: Hooks
Section 24.1: Pre-push
Available in Git 1.8.2 and above.

Version ≥ 1.8

Pre-push hooks can be used to prevent a push from going though. Reasons this is helpful include: blocking
accidental manual pushes to specific branches, or blocking pushes if an established check fails (unit tests, syntax).

A pre-push hook is created by simply creating a file named pre-push under .git/hooks/, and (gotcha alert),
making sure the file is executable: chmod +x ./git/hooks/pre-push.

Here's an example from Hannah Wolfe that blocks a push to master:

#!/bin/bash

protected_branch='master'
current_branch=$(git symbolic-ref HEAD | sed -e 's,.*/\(.*\),\1,')

if [$protected_branch = $current_branch]
then
 read -p "You're about to push master, is that what you intended? [y|n] " -n 1 -r < /dev/tty
 echo
 if echo $REPLY | grep -E '^[Yy]$' > /dev/null
 then
 exit 0 # push will execute
 fi
 exit 1 # push will not execute
else
 exit 0 # push will execute
fi

Here's an example from Volkan Unsal which makes sure RSpec tests pass before allowing the push:

#!/usr/bin/env ruby
require 'pty'
html_path = "rspec_results.html"
begin
 PTY.spawn("rspec spec --format h > rspec_results.html") do |stdin, stdout, pid|
 begin
 stdin.each { |line| print line }
 rescue Errno::EIO
 end
end
rescue PTY::ChildExited
 puts "Child process exit!"
end

find out if there were any errors
html = open(html_path).read
examples = html.match(/(\d+) examples/)[0].to_i rescue 0
errors = html.match(/(\d+) errors/)[0].to_i rescue 0
if errors == 0 then
 errors = html.match(/(\d+) failure/)[0].to_i rescue 0
end
pending = html.match(/(\d+) pending/)[0].to_i rescue 0

https://github.com/git/git/blob/master/Documentation/RelNotes/1.8.2.txt
https://dev.ghost.org/prevent-master-push/
https://coderwall.com/p/k1hbyw/how-to-run-rspec-tests-before-pushing-with-a-git-pre-push-hook
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 101

if errors.zero?
 puts "0 failed! #{examples} run, #{pending} pending"
 # HTML Output when tests ran successfully:
 # puts "View spec results at #{File.expand_path(html_path)}"
 sleep 1
 exit 0
else
 puts "\aCOMMIT FAILED!!"
 puts "View your rspec results at #{File.expand_path(html_path)}"
 puts
 puts "#{errors} failed! #{examples} run, #{pending} pending"
 # Open HTML Ooutput when tests failed
 # `open #{html_path}`
 exit 1
end

As you can see, there are lots of possibilities, but the core piece is to exit 0 if good things happened, and exit 1 if
bad things happened. Anytime you exit 1 the push will be prevented and your code will be in the state it was
before running git push....

When using client side hooks, keep in mind that users can skip all client side hooks by using the option "--no-verify"
on a push. If you're relying on the hook to enforce process, you can get burned.

Documentation: https://git-scm.com/docs/githooks#_pre_push
Official Sample:
https://github.com/git/git/blob/87c86dd14abe8db7d00b0df5661ef8cf147a72a3/templates/hooks--pre-push.sample

Section 24.2: Verify Maven build (or other build system)
before committing
.git/hooks/pre-commit

#!/bin/sh
if [-s pom.xml]; then
 echo "Running mvn verify"
 mvn clean verify
 if [$? -ne 0]; then
 echo "Maven build failed"
 exit 1
 fi
fi

Section 24.3: Automatically forward certain pushes to other
repositories
post-receive hooks can be used to automatically forward incoming pushes to another repository.

$ cat .git/hooks/post-receive

#!/bin/bash

IFS=' '
while read local_ref local_sha remote_ref remote_sha
do

 echo "$remote_ref" | egrep '^refs\/heads\/[A-Z]+-[0-9]+$' >/dev/null && {
 ref=`echo $remote_ref | sed -e 's/^refs\/heads\///'`

https://git-scm.com/docs/githooks#_pre_push
https://github.com/git/git/blob/87c86dd14abe8db7d00b0df5661ef8cf147a72a3/templates/hooks--pre-push.sample
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 102

 echo Forwarding feature branch to other repository: $ref
 git push -q --force other_repos $ref
 }

done

In this example, the egrep regexp looks for a specific branch format (here: JIRA-12345 as used to name Jira issues).
You can leave this part off if you want to forward all branches, of course.

Section 24.4: Commit-msg
This hook is similar to the prepare-commit-msg hook, but it's called after the user enters a commit message rather
than before. This is usually used to warn developers if their commit message is in an incorrect format.

The only argument passed to this hook is the name of the file that contains the message. If you don't like the
message that the user has entered, you can either alter this file in-place (same as prepare-commit-msg) or you can
abort the commit entirely by exiting with a non-zero status.

The following example is used to check if the word ticket followed by a number is present on the commit message

word="ticket [0-9]"
isPresent=$(grep -Eoh "$word" $1)

if [[-z $isPresent]]
 then echo "Commit message KO, $word is missing"; exit 1;
 else echo "Commit message OK"; exit 0;
fi

Section 24.5: Local hooks
Local hooks affect only the local repositories in which they reside. Each developer can alter their own local hooks,
so they can't be used reliably as a way to enforce a commit policy. They are designed to make it easier for
developers to adhere to certain guidelines and avoid potential problems down the road.

There are six types of local hooks: pre-commit, prepare-commit-msg, commit-msg, post-commit, post-checkout,
and pre-rebase.

The first four hooks relate to commits and allow you to have some control over each part in a commit's life cycle.
The final two let you perform some extra actions or safety checks for the git checkout and git rebase commands.

All of the "pre-" hooks let you alter the action that’s about to take place, while the "post-" hooks are used primarily
for notifications.

Section 24.6: Post-checkout
This hook works similarly to the post-commit hook, but it's called whenever you successfully check out a reference
with git checkout. This could be a useful tool for clearing out your working directory of auto-generated files that
would otherwise cause confusion.

This hook accepts three parameters:

the ref of the previous HEAD,1.
the ref of the new HEAD, and2.
a flag indicating if it was a branch checkout or a file checkout (1 or 0, respectively).3.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 103

Its exit status has no affect on the git checkout command.

Section 24.7: Post-commit
This hook is called immediately after the commit-msg hook. It cannot alter the outcome of the git commit
operation, therefore it's used primarily for notification purposes.

The script takes no parameters, and its exit status does not affect the commit in any way.

Section 24.8: Post-receive
This hook is called after a successful push operation. It is typically used for notification purposes.

The script takes no parameters, but is sent the same information as pre-receive via standard input:

<old-value> <new-value> <ref-name>

Section 24.9: Pre-commit
This hook is executed every time you run git commit, to verify what is about to be committed. You can use this
hook to inspect the snapshot that is about to be committed.

This type of hook is useful for running automated tests to make sure the incoming commit doesn't break existing
functionality of your project. This type of hook may also check for whitespace or EOL errors.

No arguments are passed to the pre-commit script, and exiting with a non-zero status aborts the entire commit.

Section 24.10: Prepare-commit-msg
This hook is called after the pre-commit hook to populate the text editor with a commit message. This is typically
used to alter the automatically generated commit messages for squashed or merged commits.

One to three arguments are passed to this hook:

The name of a temporary file that contains the message.
The type of commit, either

message (-m or -F option),
template (-t option),
merge (if it's a merge commit), or
squash (if it's squashing other commits).

The SHA1 hash of the relevant commit. This is only given if -c, -C, or --amend option was given.

Similar to pre-commit, exiting with a non-zero status aborts the commit.

Section 24.11: Pre-rebase
This hook is called before git rebase begins to alter code structure. This hook is typically used for making sure a
rebase operation is appropriate.

This hook takes 2 parameters:

the upstream branch that the series was forked from, and1.
the branch being rebased (empty when rebasing the current branch).2.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 104

You can abort the rebase operation by exiting with a non-zero status.

Section 24.12: Pre-receive
This hook is executed every time somebody uses git push to push commits to the repository. It always resides in
the remote repository that is the destination of the push and not in the originating (local) repository.

The hook runs before any references are updated. It is typically used to enforce any kind of development policy.

The script takes no parameters, but each ref that is being pushed is passed to the script on a separate line on
standard input in the following format:

<old-value> <new-value> <ref-name>

Section 24.13: Update
This hook is called after pre-receive, and it works the same way. It's called before anything is actually updated, but
is called separately for each ref that was pushed rather than all of the refs at once.

This hook accepts the following 3 arguments:

name of the ref being updated,
old object name stored in the ref, and
new object name stored in the ref.

This is the same information passed to pre-receive, but since update is invoked separately for each ref, you can
reject some refs while allowing others.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 105

Chapter 25: Cloning Repositories
Section 25.1: Shallow Clone
Cloning a huge repository (like a project with multiple years of history) might take a long time, or fail because of the
amount of data to be transferred. In cases where you don't need to have the full history available, you can do a
shallow clone:

git clone [repo_url] --depth 1

The above command will fetch just the last commit from the remote repository.

Be aware that you may not be able to resolve merges in a shallow repository. It's often a good idea to take at least
as many commits are you are going to need to backtrack to resolve merges. For example, to instead get the last 50
commits:

git clone [repo_url] --depth 50

Later, if required, you can the fetch the rest of the repository:

Version ≥ 1.8.3

git fetch --unshallow # equivalent of git fetch -–depth=2147483647
 # fetches the rest of the repository
Version < 1.8.3

git fetch --depth=1000 # fetch the last 1000 commits

Section 25.2: Regular Clone
To download the entire repository including the full history and all branches, type:

git clone <url>

The example above will place it in a directory with the same name as the repository name.

To download the repository and save it in a specific directory, type:

git clone <url> [directory]

For more details, visit Clone a repository.

Section 25.3: Clone a specific branch
To clone a specific branch of a repository, type --branch <branch name> before the repository url:

git clone --branch <branch name> <url> [directory]

To use the shorthand option for --branch, type -b. This command downloads entire repository and checks out
<branch name>.

To save disk space you can clone history leading only to single branch with:

git clone --branch <branch_name> --single-branch <url> [directory]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 106

If --single-branch is not added to the command, history of all branches will be cloned into [directory]. This can
be issue with big repositories.

To later undo --single-branch flag and fetch the rest of repository use command:

git config remote.origin.fetch "+refs/heads/*:refs/remotes/origin/*"
git fetch origin

Section 25.4: Clone recursively
Version ≥ 1.6.5

git clone <url> --recursive

Clones the repository and also clones all submodules. If the submodules themselves contain additional
submodules, Git will also clone those.

Section 25.5: Clone using a proxy
If you need to download files with git under a proxy, setting proxy server system-wide couldn't be enough. You
could also try the following:

git config --global http.proxy http://<proxy-server>:<port>/

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 107

Chapter 26: Stashing
Parameter Details

show Show the changes recorded in the stash as a diff between the stashed state and its original parent.
When no <stash> is given, shows the latest one.

list
List the stashes that you currently have. Each stash is listed with its name (e.g. stash@{0} is the latest
stash, stash@{1} is the one before, etc.), the name of the branch that was current when the stash was
made, and a short description of the commit the stash was based on.

pop Remove a single stashed state from the stash list and apply it on top of the current working tree state.

apply Like pop, but do not remove the state from the stash list.

clear Remove all the stashed states. Note that those states will then be subject to pruning, and may be
impossible to recover.

drop Remove a single stashed state from the stash list. When no <stash> is given, it removes the latest one.
i.e. stash@{0}, otherwise <stash> must be a valid stash log reference of the form stash@{<revision>}.

create
Create a stash (which is a regular commit object) and return its object name, without storing it
anywhere in the ref namespace. This is intended to be useful for scripts. It is probably not the
command you want to use; see "save" above.

store
Store a given stash created via git stash create (which is a dangling merge commit) in the stash ref,
updating the stash reflog. This is intended to be useful for scripts. It is probably not the command you
want to use; see "save" above.

Section 26.1: What is Stashing?
When working on a project, you might be half-way through a feature branch change when a bug is raised against
master. You're not ready to commit your code, but you also don't want to lose your changes. This is where git
stash comes in handy.

Run git status on a branch to show your uncommitted changes:

(master) $ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: business/com/test/core/actions/Photo.c

no changes added to commit (use "git add" and/or "git commit -a")

Then run git stash to save these changes to a stack:

(master) $ git stash
Saved working directory and index state WIP on master:
2f2a6e1 Merge pull request #1 from test/test-branch
HEAD is now at 2f2a6e1 Merge pull request #1 from test/test-branch

If you have added files to your working directory these can be stashed as well. You just need to stage them first.

(master) $ git stash
Saved working directory and index state WIP on master:
(master) $ git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be committed)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 108

 NewPhoto.c

nothing added to commit but untracked files present (use "git add" to track)
(master) $ git stage NewPhoto.c
(master) $ git stash
Saved working directory and index state WIP on master:
(master) $ git status
On branch master
nothing to commit, working tree clean
(master) $

Your working directory is now clean of any changes you made. You can see this by re-running git status:

(master) $ git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

To apply the very last stash, run git stash apply (additionally, you can apply and remove the last stashed changed
with git stash pop):

(master) $ git stash apply
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: business/com/test/core/actions/Photo.c

no changes added to commit (use "git add" and/or "git commit -a")

Note, however, that stashing does not remember the branch you were working on. In the above examples, the user
was stashing on master. If they switch to the dev branch, dev, and run git stash apply the last stash is put on
the dev branch.

(master) $ git checkout -b dev
Switched to a new branch 'dev'
(dev) $ git stash apply
On branch dev
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: business/com/test/core/actions/Photo.c

no changes added to commit (use "git add" and/or "git commit -a")

Section 26.2: Create stash
Save the current state of working directory and the index (also known as the staging area) in a stack of stashes.

git stash

To include all untracked files in the stash use the --include-untracked or -u flags.

git stash --include-untracked

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 109

To include a message with your stash to make it more easily identifiable later

git stash save "<whatever message>"

To leave the staging area in current state after stash use the --keep-index or -k flags.

git stash --keep-index

Section 26.3: Apply and remove stash
To apply the last stash and remove it from the stack - type:

git stash pop

To apply specific stash and remove it from the stack - type:

git stash pop stash@{n}

Section 26.4: Apply stash without removing it
Applies the last stash without removing it from the stack

git stash apply

Or a specific stash

git stash apply stash@{n}

Section 26.5: Show stash
Shows the changes saved in the last stash

git stash show

Or a specific stash

git stash show stash@{n}

To show content of the changes saved for the specific stash

git stash show -p stash@{n}

Section 26.6: Partial stash
If you would like to stash only some diffs in your working set, you can use a partial stash.

git stash -p

And then interactively select which hunks to stash.

As of version 2.13.0 you can also avoid the interactive mode and create a partial stash with a pathspec using the
new push keyword.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 110

git stash push -m "My partial stash" -- app.config

Section 26.7: List saved stashes
git stash list

This will list all stashes in the stack in reverse chronological order.
You will get a list that looks something like this:

stash@{0}: WIP on master: 67a4e01 Merge tests into develop
stash@{1}: WIP on master: 70f0d95 Add user role to localStorage on user login

You can refer to specific stash by its name, for example stash@{1}.

Section 26.8: Move your work in progress to another branch
If while working you realize you're on wrong branch and you haven't created any commits yet, you can easily move
your work to correct branch using stashing:

git stash
git checkout correct-branch
git stash pop

Remember git stash pop will apply the last stash and delete it from the stash list. To keep the stash in the list and
only apply to some branch you can use:

git stash apply

Section 26.9: Remove stash
Remove all stash

git stash clear

Removes the last stash

git stash drop

Or a specific stash

git stash drop stash@{n}

Section 26.10: Apply part of a stash with checkout
You've made a stash and wish to checkout only some of the files in that stash.

git checkout stash@{0} -- myfile.txt

Section 26.11: Recovering earlier changes from stash
To get your most recent stash after running git stash, use

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 111

 git stash apply

To see a list of your stashes, use

 git stash list

You will get a list that looks something like this

stash@{0}: WIP on master: 67a4e01 Merge tests into develop
stash@{1}: WIP on master: 70f0d95 Add user role to localStorage on user login

Choose a different git stash to restore with the number that shows up for the stash you want

git stash apply stash@{2}

Section 26.12: Interactive Stashing
Stashing takes the dirty state of your working directory – that is, your modified tracked files and staged changes –
and saves it on a stack of unfinished changes that you can reapply at any time.

Stashing only modified files:

Suppose you don't want to stash the staged files and only stash the modified files so you can use:

git stash --keep-index

Which will stash only the modified files.

Stashing untracked files:

Stash never saves the untracked files it only stashes the modified and staged files. So suppose if you need to stash
the untracked files too then you can use this:

git stash -u

this will track the untracked, staged and modified files.

Stash some particular changes only:

Suppose you need to stash only some part of code from the file or only some files only from all the modified and
stashed files then you can do it like this:

git stash --patch

Git will not stash everything that is modified but will instead prompt you interactively which of the changes you
would like to stash and which you would like to keep in your working directory.

Section 26.13: Recover a dropped stash
If you have only just popped it and the terminal is still open, you will still have the hash value printed by git stash
pop on screen:

$ git stash pop

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 112

[...]
Dropped refs/stash@{0} (2ca03e22256be97f9e40f08e6d6773c7d41dbfd1)

(Note that git stash drop also produces the same line.)

Otherwise, you can find it using this:

git fsck --no-reflog | awk '/dangling commit/ {print $3}'

This will show you all the commits at the tips of your commit graph which are no longer referenced from any
branch or tag – every lost commit, including every stash commit you’ve ever created, will be somewhere in that
graph.

The easiest way to find the stash commit you want is probably to pass that list to gitk:

gitk --all $(git fsck --no-reflog | awk '/dangling commit/ {print $3}')

This will launch a repository browser showing you every single commit in the repository ever, regardless of whether it
is reachable or not.

You can replace gitk there with something like git log --graph --oneline --decorate if you prefer a nice graph
on the console over a separate GUI app.

To spot stash commits, look for commit messages of this form:

 WIP on somebranch: commithash Some old commit message

Once you know the hash of the commit you want, you can apply it as a stash:

git stash apply sh_hash

Or you can use the context menu in gitk to create branches for any unreachable commits you are interested in.
After that, you can do whatever you want with them with all the normal tools. When you’re done, just blow those
branches away again.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 113

Chapter 27: Subtrees
Section 27.1: Create, Pull, and Backport Subtree
Create Subtree

Add a new remote called plugin pointing to the plugin's repository:

git remote add plugin https://path.to/remotes/plugin.git

Then Create a subtree specifying the new folder prefix plugins/demo. plugin is the remote name, and master
refers to the master branch on the subtree's repository:

git subtree add --prefix=plugins/demo plugin master

Pull Subtree Updates

Pull normal commits made in plugin:

git subtree pull --prefix=plugins/demo plugin master

Backport Subtree Updates

Specify commits made in superproject to be backported:1.

git commit -am "new changes to be backported"

Checkout new branch for merging, set to track subtree repository:2.

git checkout -b backport plugin/master

Cherry-pick backports:3.

git cherry-pick -x --strategy=subtree master

Push changes back to plugin source:4.

git push plugin backport:master

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 114

Chapter 28: Renaming
Parameter Details

-f or --force Force renaming or moving of a file even if the target exists

Section 28.1: Rename Folders
To rename a folder from oldName to newName

git mv directoryToFolder/oldName directoryToFolder/newName

Followed by git commit and/or git push

If this error occurs:

fatal: renaming 'directoryToFolder/oldName' failed: Invalid argument

Use the following command:

git mv directoryToFolder/oldName temp && git mv temp directoryToFolder/newName

Section 28.2: rename a local and the remote branch
the easiest way is to have the local branch checked out:

git checkout old_branch

then rename the local branch, delete the old remote and set the new renamed branch as upstream:

git branch -m new_branch
git push origin :old_branch
git push --set-upstream origin new_branch

Section 28.3: Renaming a local branch
You can rename branch in local repository using this command:

git branch -m old_name new_name

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 115

Chapter 29: Pushing
Parameter Details

--force Overwrites the remote ref to match your local ref. Can cause the remote repository to lose commits, so
use with care.

--verbose Run verbosely.

<remote> The remote repository that is destination of the push operation.

<refspec>... Specify what remote ref to update with what local ref or object.

After changing, staging, and committing code with Git, pushing is required to make your changes available to others
and transfers your local changes to the repository server. This topic will cover how to properly push code using Git.

Section 29.1: Push a specific object to a remote branch
General syntax
git push <remotename> <object>:<remotebranchname>

Example
git push origin master:wip-yourname

Will push your master branch to the wip-yourname branch of origin (most of the time, the repository you cloned
from).

Delete remote branch

Deleting the remote branch is the equivalent of pushing an empty object to it.

git push <remotename> :<remotebranchname>

Example
git push origin :wip-yourname

Will delete the remote branch wip-yourname

Instead of using the colon, you can also use the --delete flag, which is better readable in some cases.

Example
git push origin --delete wip-yourname

Push a single commit

If you have a single commit in your branch that you want to push to a remote without pushing anything else, you
can use the following

git push <remotename> <commit SHA>:<remotebranchname>

Example

Assuming a git history like this

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 116

eeb32bc Commit 1 - already pushed
347d700 Commit 2 - want to push
e539af8 Commit 3 - only local
5d339db Commit 4 - only local

to push only commit 347d700 to remote master use the following command

git push origin 347d700:master

Section 29.2: Push
git push

will push your code to your existing upstream. Depending on the push configuration, it will either push code from
you current branch (default in Git 2.x) or from all branches (default in Git 1.x).

Specify remote repository

When working with git, it can be handy to have multiple remote repositories. To specify a remote repository to push
to, just append its name to the command.

git push origin

Specify Branch

To push to a specific branch, say feature_x:

git push origin feature_x

Set the remote tracking branch

Unless the branch you are working on originally comes from a remote repository, simply using git push won't work
the first time. You must perform the following command to tell git to push the current branch to a specific
remote/branch combination

git push --set-upstream origin master

Here, master is the branch name on the remote origin. You can use -u as a shorthand for --set-upstream.

Pushing to a new repository

To push to a repository that you haven't made yet, or is empty:

Create the repository on GitHub (if applicable)1.
Copy the url given to you, in the form https://github.com/USERNAME/REPO_NAME.git2.
Go to your local repository, and execute git remote add origin URL3.

To verify it was added, run git remote -v
Run git push origin master4.

Your code should now be on GitHub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 117

For more information view Adding a remote repository

Explanation

Push code means that git will analyze the differences of your local commits and remote and send them to be
written on the upstream. When push succeeds, your local repository and remote repository are synchronized and
other users can see your commits.

For more details on the concepts of "upstream" and "downstream", see Remarks.

Section 29.3: Force Pushing
Sometimes, when you have local changes incompatible with remote changes (ie, when you cannot fast-forward the
remote branch, or the remote branch is not a direct ancestor of your local branch), the only way to push your
changes is a force push.

git push -f

or

git push --force

Important notes

This will overwrite any remote changes and your remote will match your local.

Attention: Using this command may cause the remote repository to lose commits. Moreover, it is strongly advised
against doing a force push if you are sharing this remote repository with others, since their history will retain every
overwritten commit, thus rending their work out of sync with the remote repository.

As a rule of thumb, only force push when:

Nobody except you pulled the changes you are trying to overwrite
You can force everyone to clone a fresh copy after the forced push and make everyone apply their changes
to it (people may hate you for this).

Section 29.4: Push tags
git push --tags

Pushes all of the git tags in the local repository that are not in the remote one.

Section 29.5: Changing the default push behavior
Current updates the branch on the remote repository that shares a name with the current working branch.

git config push.default current

Simple pushes to the upstream branch, but will not work if the upstream branch is called something else.

git config push.default simple

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 118

Upstream pushes to the upstream branch, no matter what it is called.

git config push.default upstream

Matching pushes all branches that match on the local and the remote git config push.default upstream

After you've set the preferred style, use

git push

to update the remote repository.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 119

Chapter 30: Internals
Section 30.1: Repo
A git repository is an on-disk data structure which stores metadata for a set of files and directories.

It lives in your project's .git/ folder. Every time you commit data to git, it gets stored here. Inversely, .git/
contains every single commit.

It's basic structure is like this:

.git/
 objects/
 refs/

Section 30.2: Objects
git is fundamentally a key-value store. When you add data to git, it builds an object and uses the SHA-1 hash of
the object's contents as a key.

Therefore, any content in git can be looked up by it's hash:

git cat-file -p 4bb6f98

There are 4 types of Object:

blob

tree

commit

tag

Section 30.3: HEAD ref
HEAD is a special ref. It always points to the current object.

You can see where it's currently pointing by checking the .git/HEAD file.

Normally, HEAD points to another ref:

$cat .git/HEAD
ref: refs/heads/mainline

But it can also point directly to an object:

$ cat .git/HEAD
4bb6f98a223abc9345a0cef9200562333

This is what's known as a "detached head" - because HEAD is not attached to (pointing at) any ref, but rather points
directly to an object.

Section 30.4: Refs
A ref is essentially a pointer. It's a name that points to an object. For example,

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 120

"master" --> 1a410e...

They are stored in `.git/refs/heads/ in plain text files.

$ cat .git/refs/heads/mainline
4bb6f98a223abc9345a0cef9200562333

This is commonly what are called branches. However, you'll note that in git there is no such thing as a branch -
only a ref.

Now, it's possible to navigate git purely by jumping around to different objects directly by their hashes. But this
would be terribly inconvenient. A ref gives you a convenient name to refer to objects by. It's much easier to ask
git to go to a specific place by name rather than by hash.

Section 30.5: Commit Object
A commit is probably the object type most familiar to git users, as it's what they are used to creating with the git
commit commands.

However, the commit does not directly contain any changed files or data. Rather, it contains mostly metadata and
pointers to other objects which contain the actual contents of the commit.

A commit contains a few things:

hash of a tree
hash of a parent commit
author name/email, commiter name/email
commit message

You can see the contents of any commit like this:

$ git cat-file commit 5bac93
tree 04d1daef...
parent b7850ef5...
author Geddy Lee <glee@rush.com>
commiter Neil Peart <npeart@rush.com>

First commit!

Tree

A very important note is that the tree objects stores EVERY file in your project, and it stores whole files not diffs.
This means that each commit contains a snapshot of the entire project*.

*Technically, only changed files are stored. But this is more an implementation detail for efficiency. From a design
perspective, a commit should be considered as containing a complete copy of the project.

Parent

The parent line contains a hash of another commit object, and can be thought of as a "parent pointer" that points to
the "previous commit". This implicitly forms a graph of commits known as the commit graph. Specifically, it's a
directed acyclic graph (or DAG).

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 121

Section 30.6: Tree Object
A tree basically represents a folder in a traditional filesystem: nested containers for files or other folders.

A tree contains:

0 or more blob objects
0 or more tree objects

Just as you can use ls or dir to list the contents of a folder, you can list the contents of a tree object.

$ git cat-file -p 07b1a631
100644 blob b91bba1b .gitignore
100644 blob cc0956f1 Makefile
040000 tree 92e1ca7e src
...

You can look up the files in a commit by first finding the hash of the tree in the commit, and then looking at that
tree:

$ git cat-file commit 4bb6f93a
tree 07b1a631
parent ...
author ...
commiter ...

$ git cat-file -p 07b1a631
100644 blob b91bba1b .gitignore
100644 blob cc0956f1 Makefile
040000 tree 92e1ca7e src
...

Section 30.7: Blob Object
A blob contains arbitrary binary file contents. Commonly, it will be raw text such as source code or a blog article.
But it could just as easily be the bytes of a PNG file or anything else.

If you have the hash of a blob, you can look at it's contents.

$ git cat-file -p d429810
package com.example.project

class Foo {
 ...
}
...

For example, you can browse a tree as above, and then look at one of the blobs in it.

$ git cat-file -p 07b1a631
100644 blob b91bba1b .gitignore
100644 blob cc0956f1 Makefile
040000 tree 92e1ca7e src
100644 blob cae391ff Readme.txt

$ git cat-file -p cae391ff
Welcome to my project! This is the readmefile

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 122

...

Section 30.8: Creating new Commits
The git commit command does a few things:

Create blobs and trees to represent your project directory - stored in .git/objects1.
Creates a new commit object with your author information, commit message, and the root tree from step 1 -2.
also stored in .git/objects
Updates the HEAD ref in .git/HEAD to the hash of the newly-created commit3.

This results in a new snapshot of your project being added to git that is connected to the previous state.

Section 30.9: Moving HEAD
When you run git checkout on a commit (specified by hash or ref) you're telling git to make your working
directory look like how it did when the snapshot was taken.

Update the files in the working directory to match the tree inside the commit1.
Update HEAD to point to the specified hash or ref2.

Section 30.10: Moving refs around
Running git reset --hard moves refs to the specified hash/ref.

Moving MyBranch to b8dc53:

$ git checkout MyBranch # moves HEAD to MyBranch
$ git reset --hard b8dc53 # makes MyBranch point to b8dc53

Section 30.11: Creating new Refs
Running git checkout -b <refname> will create a new ref that points to the current commit.

$ cat .git/head
1f324a

$ git checkout -b TestBranch

$ cat .git/refs/heads/TestBranch
1f324a

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 123

Chapter 31: git-tfs
Section 31.1: git-tfs clone
This will create a folder with the same name as the project, i.e. /My.Project.Name

$ git tfs clone http://tfs:8080/tfs/DefaultCollection/ $/My.Project.Name

Section 31.2: git-tfs clone from bare git repository
Cloning from a git repository is ten times faster than cloning directly from TFVS and works well in a team
environment. At least one team member will have to create the bare git repository by doing the regular git-tfs clone
first. Then the new repository can be bootstrapped to work with TFVS.

$ git clone x:/fileshare/git/My.Project.Name.git
$ cd My.Project.Name
$ git tfs bootstrap
$ git tfs pull

Section 31.3: git-tfs install via Chocolatey
The following assumes you will use kdiff3 for file diffing and although not essential it is a good idea.

C:\> choco install kdiff3

Git can be installed first so you can state any parameters you wish. Here all the Unix tools are also installed and
'NoAutoCrlf' means checkout as is, commit as is.

C:\> choco install git -params '"/GitAndUnixToolsOnPath /NoAutoCrlf"'

This is all you really need to be able to install git-tfs via chocolatey.

C:\> choco install git-tfs

Section 31.4: git-tfs Check In
Launch the Check In dialog for TFVS.

$ git tfs checkintool

This will take all of your local commits and create a single check-in.

Section 31.5: git-tfs push
Push all local commits to the TFVS remote.

$ git tfs rcheckin

Note: this will fail if Check-in Notes are required. These can be bypassed by adding git-tfs-force: rcheckin to
the commit message.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 124

Chapter 32: Empty directories in Git
Section 32.1: Git doesn't track directories
Assume you've initialized a project with the following directory structure:

/build
app.js

Then you add everything so you've created so far and commit:

git init
git add .
git commit -m "Initial commit"

Git will only track the file app.js.

Assume you added a build step to your application and rely on the "build" directory to be there as the output
directory (and you don't want to make it a setup instruction every developer has to follow), a convention is to
include a ".gitkeep" file inside the directory and let Git track that file.

/build
 .gitkeep
app.js

Then add this new file:

git add build/.gitkeep
git commit -m "Keep the build directory around"

Git will now track the file build/.gitkeep file and therefore the build folder will be made available on checkout.

Again, this is just a convention and not a Git feature.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 125

Chapter 33: git-svn
Section 33.1: Cloning the SVN repository
You need to create a new local copy of the repository with the command

git svn clone SVN_REPO_ROOT_URL [DEST_FOLDER_PATH] -T TRUNK_REPO_PATH -t TAGS_REPO_PATH -b
BRANCHES_REPO_PATH

If your SVN repository follows the standard layout (trunk, branches, tags folders) you can save some typing:

git svn clone -s SVN_REPO_ROOT_URL [DEST_FOLDER_PATH]

git svn clone checks out each SVN revision, one by one, and makes a git commit in your local repository in order
to recreate the history. If the SVN repository has a lot of commits this will take a while.

When the command is finished you will have a full fledged git repository with a local branch called master that
tracks the trunk branch in the SVN repository.

Section 33.2: Pushing local changes to SVN
The command

git svn dcommit

will create a SVN revision for each of your local git commits. As with SVN, your local git history must be in sync with
the latest changes in the SVN repository, so if the command fails, try performing a git svn rebase first.

Section 33.3: Working locally
Just use your local git repository as a normal git repo, with the normal git commands:

git add FILE and git checkout -- FILE To stage/unstage a file
git commit To save your changes. Those commits will be local and will not be "pushed" to the SVN repo, just
like in a normal git repository
git stash and git stash pop Allows using stashes
git reset HEAD --hard Revert all your local changes
git log Access all the history in the repository
git rebase -i so you can rewrite your local history freely
git branch and git checkout to create local branches

As the git-svn documentation states "Subversion is a system that is far less sophisticated than Git" so you can't use
all the full power of git without messing up the history in the Subversion server. Fortunately the rules are very
simple: Keep the history linear

This means you can make almost any git operation: creating branches, removing/reordering/squashing commits,
move the history around, delete commits, etc. Anything but merges. If you need to reintegrate the history of local
branches use git rebase instead.

When you perform a merge, a merge commit is created. The particular thing about merge commits is that they
have two parents, and that makes the history non-linear. Non-linear history will confuse SVN in the case you "push"
a merge commit to the repository.

However do not worry: you won't break anything if you "push" a git merge commit to SVN. If you do so, when

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 126

the git merge commit is sent to the svn server it will contain all the changes of all commits for that merge, so you
will lose the history of those commits, but not the changes in your code.

Section 33.4: Getting the latest changes from SVN
The equivalent to git pull is the command

git svn rebase

This retrieves all the changes from the SVN repository and applies them on top of your local commits in your
current branch.

You can also use the command

git svn fetch

to retrieve the changes from the SVN repository and bring them to your local machine but without applying them to
your local branch.

Section 33.5: Handling empty folders
git does not recognice the concept of folders, it just works with files and their filepaths. This means git does not
track empty folders. SVN, however, does. Using git-svn means that, by default, any change you do involving empty
folders with git will not be propagated to SVN.

Using the --rmdir flag when issuing a comment corrects this issue, and removes an empty folder in SVN if you
locally delete the last file inside it:

git svn dcommit --rmdir

Unfortunately it does not removes existing empty folders: you need to do it manually.

To avoid adding the flag each time you do a dcommit, or to play it safe if you are using a git GUI tool (like
SourceTree) you can set this behaviour as default with the command:

git config --global svn.rmdir true

This changes your .gitconfig file and adds these lines:

[svn]
rmdir = true

To remove all untracked files and folders that should be kept empty for SVN use the git command:

git clean -fd

Please note: the previous command will remove all untracked files and empty folders, even the ones that should be
tracked by SVN! If you need to generate againg the empty folders tracked by SVN use the command

git svn mkdirs

In practices this means that if you want to cleanup your workspace from untracked files and folders you should
always use both commands to recreate the empty folders tracked by SVN:

git clean -fd && git svn mkdirs

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 127

Chapter 34: Archive
Parameter Details

--format=<fmt>
Format of the resulting archive: tar or zip. If this options is not given and the output
file is specified, the format is inferred from the filename if possible. Otherwise,
defaults to tar.

-l, --list Show all available formats.

-v, --verbose Report progress to stderr.

--prefix=<prefix>/ Prepend <prefix>/ to each filename in the archive.

-o <file>, --output=<file> Write the archive to <file> instead of stdout.

--worktree-attributes Look for attributes in .gitattributes files in the working tree.

<extra>
This can be any options that the archiver backend understands. For zip backend,
using -0 will store the files without deflating them, while -1 through -9 can be used to
adjust compression speed and ratio.

--remote=<repo> Retrieve a tar archive from a remote repository <repo> rather than the local
repository.

--exec=<git-upload-archive> Used with --remote to specify the path to the <git-upload-archive on the remote.

<tree-ish> The tree or commit to produce an archive for.

<path>
Without an optional parameter, all files and directories in the current working
directory are included in the archive. If one or more paths are specified, only these are
included.

Section 34.1: Create an archive of git repository
With git archive it is possible to create compressed archives of a repository, for example for distributing releases.

Create a tar archive of current HEAD revision:

git archive --format tar HEAD | cat > archive-HEAD.tar

Create a tar archive of current HEAD revision with gzip compression:

git archive --format tar HEAD | gzip > archive-HEAD.tar.gz

This can also be done with (which will use the in-built tar.gz handling):

git archive --format tar.gz HEAD > archive-HEAD.tar.gz

Create a zip archive of current HEAD revision:

git archive --format zip HEAD > archive-HEAD.zip

Alternatively it is possible to just specify an output file with valid extension and the format and compression type
will be inferred from it:

git archive --output=archive-HEAD.tar.gz HEAD

Section 34.2: Create an archive of git repository with
directory prefix
It is considered good practice to use a prefix when creating git archives, so that extraction will place all files inside a

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 128

directory. To create an archive of HEAD with a directory prefix:

git archive --output=archive-HEAD.zip --prefix=src-directory-name HEAD

When extracted all the files will be extracted inside a directory named src-directory-name in the current directory.

Section 34.3: Create archive of git repository based on
specific branch, revision, tag or directory
It is also possible to create archives of other items than HEAD, such as branches, commits, tags, and directories.

To create an archive of a local branch dev:

git archive --output=archive-dev.zip --prefix=src-directory-name dev

To create an archive of a remote branch origin/dev:

git archive --output=archive-dev.zip --prefix=src-directory-name origin/dev

To create an archive of a tag v.01:

git archive --output=archive-v.01.zip --prefix=src-directory-name v.01

Create an archive of files inside a specific sub directory (sub-dir) of revision HEAD:

git archive zip --output=archive-sub-dir.zip --prefix=src-directory-name HEAD:sub-dir/

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 129

Chapter 35: Rewriting history with filter-
branch
Section 35.1: Changing the author of commits
You can use an environment filter to change the author of commits. Just modify and export $GIT_AUTHOR_NAME in
the script to change who authored the commit.

Create a file filter.sh with contents like so:

if ["$GIT_AUTHOR_NAME" = "Author to Change From"]
then
 export GIT_AUTHOR_NAME="Author to Change To"
 export GIT_AUTHOR_EMAIL="email.to.change.to@example.com"
fi

Then run filter-branch from the command line:

chmod +x ./filter.sh
git filter-branch --env-filter ./filter.sh

Section 35.2: Setting git committer equal to commit author
This command, given a commit range commit1..commit2, rewrites history so that git commit author becomes also
git committer:

git filter-branch -f --commit-filter \
 'export GIT_COMMITTER_NAME=\"$GIT_AUTHOR_NAME\";
 export GIT_COMMITTER_EMAIL=\"$GIT_AUTHOR_EMAIL\";
 export GIT_COMMITTER_DATE=\"$GIT_AUTHOR_DATE\";
 git commit-tree $@' \
 -- commit1..commit2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 130

Chapter 36: Migrating to Git
Section 36.1: SubGit
SubGit may be used to perform a one-time import of an SVN repository to git.

$ subgit import --non-interactive --svn-url http://svn.my.co/repos/myproject myproject.git

Section 36.2: Migrate from SVN to Git using Atlassian
conversion utility
Download the Atlassian conversion utility here. This utility requires Java, so please ensure that you have the Java
Runtime Environment JRE installed on the machine you plan to do the conversion.

Use the command java -jar svn-migration-scripts.jar verify to check if your machine is missing any of the
programs necessary to complete the conversion. Specifically, this command checks for the Git, subversion, and
git-svn utilities. It also verifies that you are performing the migration on a case-sensitive file system. Migration to
Git should be done on a case-sensitive file system to avoid corrupting the repository.

Next, you need to generate an authors file. Subversion tracks changes by the committer's username only. Git,
however, uses two pieces of information to distinguish a user: a real name and an email address. The following
command will generate a text file mapping the subversion usernames to their Git equivalents:

java -jar svn-migration-scripts.jar authors <svn-repo> authors.txt

where <svn-repo> is the URL of the subversion repository you wish to convert. After running this command, the
contributors' identification information will be mapped in authors.txt. The email addresses will be of the form
<username>@mycompany.com. In the authors file, you will need to manually change each person's default name
(which by default has become their username) to their actual names. Make sure to also check all of the email
addresses for correctness before proceeding.

The following command will clone an svn repo as a Git one:

git svn clone --stdlayout --authors-file=authors.txt <svn-repo> <git-repo-name>

where <svn-repo> is the same repository URL used above and <git-repo-name> is the folder name in the current
directory to clone the repository into. There are a few considerations before using this command:

The --stdlayout flag from above tells Git that you're using a standard layout with trunk, branches, and tags
folders. Subversion repositories with non-standard layouts require you to specify the locations of the trunk
folder, any/all branch folders, and the tags folder. This can be done by following this example: git svn
clone --trunk=/trunk --branches=/branches --branches=/bugfixes --tags=/tags --authors-
file=authors.txt <svn-repo> <git-repo-name>.
This command could take many hours to complete depending on the size of your repo.
To cut down the conversion time for large repositories, the conversion can be run directly on the server
hosting the subversion repository in order to eliminate network overhead.

git svn clone imports the subversion branches (and trunk) as remote branches including subversion tags (remote
branches prefixed with tags/). To convert these to actual branches and tags, run the following commands on a
Linux machine in the order they are provided. After running them, git branch -a should show the correct branch
names, and git tag -l should show the repository tags.

http://www.subgit.com/remote-book.html#7
https://bitbucket.org/atlassian/svn-migration-scripts/downloads/svn-migration-scripts.jar
https://www.java.com/en/download/installed.jsp
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 131

git for-each-ref refs/remotes/origin/tags | cut -d / -f 5- | grep -v @ | while read tagname; do git
tag $tagname origin/tags/$tagname; git branch -r -d origin/tags/$tagname; done
git for-each-ref refs/remotes | cut -d / -f 4- | grep -v @ | while read branchname; do git branch
"$branchname" "refs/remotes/origin/$branchname"; git branch -r -d "origin/$branchname"; done

The conversion from svn to Git is now complete! Simply push your local repo to a server and you can continue to
contribute using Git as well as having a completely preserved version history from svn.

Section 36.3: Migrating Mercurial to Git
One can use the following methods in order to import a Mercurial Repo into Git:

Using fast export:1.

cd
git clone git://repo.or.cz/fast-export.git
git init git_repo
cd git_repo
~/fast-export/hg-fast-export.sh -r /path/to/old/mercurial_repo
git checkout HEAD

Using Hg-Git: A very detailed answer here: https://stackoverflow.com/a/31827990/52832132.

Using GitHub's Importer: Follow the (detailed) instructions at GitHub.3.

Section 36.4: Migrate from Team Foundation Version Control
(TFVC) to Git
You could migrate from team foundation version control to git by using an open source tool called Git-TF. Migration
will also transfer your existing history by converting tfs checkins to git commits.

To put your solution into Git by using Git-TF follow these steps:

Download Git-TF

You can download (and install) Git-TF from Codeplex: Git-TF @ Codeplex

Clone your TFVC solution

Launch powershell (win) and type the command

git-tf clone http://my.tfs.server.address:port/tfs/mycollection '$/myproject/mybranch/mysolution' -
-deep

The --deep switch is the keeyword to note as this tells Git-Tf to copy your checkin-history. You now have a local git
repository in the folder from which you called your cloe command from.

Cleanup

Add a .gitignore file. If you are using Visual Studio the editor can do this for you, otherwise you could do this
manually by downloading a complete file from github/gitignore.
RemoveTFS source control bindings from solution (remove all *.vssscc files). You could also modify your
solution file by removing the GlobalSection(TeamFoundationVersionControl)......EndClobalSection

Commit & Push

https://github.com/frej/fast-export
http://hg-git.github.io/
https://stackoverflow.com/a/31827990/5283213
https://help.github.com/articles/about-github-importer/
https://github.com/new/import
https://gittf.codeplex.com/
https://github.com/github/gitignore
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 132

Complete your conversion by committing and pushing your local repository to your remote.

git add .
git commit -a -m "Coverted solution source control from TFVC to Git"

git remote add origin https://my.remote/project/repo.git

git push origin master

Section 36.5: Migrate from SVN to Git using svn2git
svn2git is a Ruby wrapper around git's native SVN support through git-svn, helping you with migrating projects from
Subversion to Git, keeping history (incl. trunk, tags and branches history).

Examples

To migrate a svn repository with the standard layout (ie. branches, tags and trunk at the root level of the
repository):

$ svn2git http://svn.example.com/path/to/repo

To migrate a svn repository which is not in standard layout:

$ svn2git http://svn.example.com/path/to/repo --trunk trunk-dir --tags tags-dir --branches
branches-dir

In case you do not want to migrate (or do not have) branches, tags or trunk you can use options --notrunk, --
nobranches, and --notags.

For example, $ svn2git http://svn.example.com/path/to/repo --trunk trunk-dir --notags --nobranches
will migrate only trunk history.

To reduce the space required by your new repository you may want to exclude any directories or files you once
added while you should not have (eg. build directory or archives):

$ svn2git http://svn.example.com/path/to/repo --exclude build --exclude '.*\.zip$'

Post-migration optimization

If you already have a few thousand of commits (or more) in your newly created git repository, you may want to
reduce space used before pushing your repository on a remote. This can be done using the following command:

$ git gc --aggressive

Note: The previous command can take up to several hours on large repositories (tens of thousand of commits
and/or hundreds of megabytes of history).

https://github.com/nirvdrum/svn2git
https://git-scm.com/docs/git-svn
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 133

Chapter 37: Show
Section 37.1: Overview
git show shows various Git objects.

For commits:

Shows the commit message and a diff of the changes introduced.

Command Description
git show shows the previous commit
git show @~3 shows the 3rd-from-last commit

For trees and blobs:

Shows the tree or blob.

Command Description
git show @~3: shows the project root directory as it was 3 commits ago (a tree)
git show @~3:src/program.js shows src/program.js as it was 3 commits ago (a blob)
git show @:a.txt @:b.txt shows a.txt concatenated with b.txt from current commit

For tags:

Shows the tag message and the referenced object.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 134

Chapter 38: Resolving merge conflicts
Section 38.1: Manual Resolution
While performing a git merge you may find that git reports a "merge conflict" error. It will report to you which files
have conflicts, and you will need to resolve the conflicts.

A git status at any point will help you see what still needs editing with a helpful message like

On branch master
You have unmerged paths.
 (fix conflicts and run "git commit")

Unmerged paths:
 (use "git add <file>..." to mark resolution)

 both modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")

Git leaves markers in the files to tell you where the conflict arose:

<<<<<<<<< HEAD: index.html #indicates the state of your current branch
<div id="footer">contact : email@somedomain.com</div>
========= #indicates break between conflicts
<div id="footer">
please contact us at email@somedomain.com
</div>
>>>>>>>>> iss2: index.html #indicates the state of the other branch (iss2)

In order to resolve the conflicts, you must edit the area between the <<<<<< and >>>>>>> markers appropriately,
remove the status lines (the <<<<<<<, >>>>>>>, and ======== lines) completely. Then git add index.html to mark
it resolved and git commit to finish the merge.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 135

Chapter 39: Bundles
Section 39.1: Creating a git bundle on the local machine and
using it on another
Sometimes you may want maintain versions of a git repository on machines that have no network connection.
Bundles allow you to package git objects and references in a repository on one machine and import those into a
repository on another.

git tag 2016_07_24
git bundle create changes_between_tags.bundle [some_previous_tag]..2016_07_24

Somehow transfer the changes_between_tags.bundle file to the remote machine; e.g., via thumb drive. Once you
have it there:

git bundle verify changes_between_tags.bundle # make sure bundle arrived intact
git checkout [some branch] # in the repo on the remote machine
git bundle list-heads changes_between_tags.bundle # list the references in the bundle
git pull changes_between_tags.bundle [reference from the bundle, e.g. last field from the previous
output]

The reverse is also possible. Once you've made changes on the remote repository you can bundle up the deltas; put
the changes on, e.g., a thumb drive, and merge them back into the local repository so the two can stay in sync
without requiring direct git, ssh, rsync, or http protocol access between the machines.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 136

Chapter 40: Display commit history
graphically with Gitk
Section 40.1: Display commit history for one file
gitk path/to/myfile

Section 40.2: Display all commits between two commits
Let's say you have two commits d9e1db9 and 5651067 and want to see what happened between them. d9e1db9 is
the oldest ancestor and 5651067 is the final descendant in the chain of commits.

gitk --ancestry-path d9e1db9 5651067

Section 40.3: Display commits since version tag
If you have the version tag v2.3 you can display all commits since that tag.

gitk v2.3..

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 137

Chapter 41: Bisecting/Finding faulty
commits
Section 41.1: Binary search (git bisect)
git bisect allows you to find which commit introduced a bug using a binary search.

Start by bisecting a session by providing two commit references: a good commit before the bug, and a bad commit
after the bug. Generally, the bad commit is HEAD.

start the git bisect session
$ git bisect start

give a commit where the bug doesn't exist
$ git bisect good 49c747d

give a commit where the bug exist
$ git bisect bad HEAD

git starts a binary search: It splits the revision in half and switches the repository to the intermediate revision.
Inspect the code to determine if the revision is good or bad:

tell git the revision is good,
which means it doesn't contain the bug
$ git bisect good

if the revision contains the bug,
then tell git it's bad
$ git bisect bad

git will continue to run the binary search on each remaining subset of bad revisions depending on your
instructions. git will present a single revision that, unless your flags were incorrect, will represent exactly the
revision where the bug was introduced.

Afterwards remember to run git bisect reset to end the bisect session and return to HEAD.

$ git bisect reset

If you have a script that can check for the bug, you can automate the process with:

$ git bisect run [script] [arguments]

Where [script] is the path to your script and [arguments] is any arguments that should be passed to your script.

Running this command will automatically run through the binary search, executing git bisect good or git bisect
bad at each step depending on the exit code of your script. Exiting with 0 indicates good, while exiting with 1-124,
126, or 127 indicates bad. 125 indicates that the script cannot test that revision (which will trigger a git bisect
skip).

Section 41.2: Semi-automatically find a faulty commit
Imagine you are on the master branch and something is not working as expected (a regression was introduced), but
you don't know where. All you know is, that is was working in the last release (which was e.g., tagged or you know
the commit hash, lets take old-rel here).

https://git-scm.com/docs/git-bisect
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 138

Git has help for you, finding the faulty commit which introduced the regression with a very low number of steps
(binary search).

First of all start bisecting:

git bisect start master old-rel

This will tell git that master is a broken revision (or the first broken version) and old-rel is the last known version.

Git will now check out a detached head in the middle of both commits. Now, you can do your testing. Depending on
whether it works or not issue

git bisect good

or

git bisect bad

. In case this commit cannot be tested, you can easily git reset and test that one, git willl take care of this.

After a few steps git will output the faulty commit hash.

In order to abort the bisect process just issue

git bisect reset

and git will restore the previous state.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 139

Chapter 42: Blaming
Parameter Details

filename Name of the file for which details need to be checked

-f Show the file name in the origin commit

-e Show the author email instead of author name

-w Ignore white spaces while making a comparison between child and parent's version

-L start,end Show only the given line range Example: git blame -L 1,2 [filename]

--show-stats Shows additional statistics at end of blame output

-l Show long rev (Default: off)

-t Show raw timestamp (Default: off)

-reverse Walk history forward instead of backward

-p, --porcelain Output for machine consumption

-M Detect moved or copied lines within a file

-C In addition to -M, detect lines moved or copied from other files that were modified in the same
commit

-h Show the help message

-c Use the same output mode as git-annotate (Default: off)

-n Show the line number in the original commit (Default: off)

Section 42.1: Only show certain lines
Output can be restricted by specifying line ranges as

git blame -L <start>,<end>

Where <start> and <end> can be:

line number

git blame -L 10,30

/regex/

git blame -L /void main/, git blame -L 46,/void foo/

+offset, -offset (only for <end>)

git blame -L 108,+30, git blame -L 215,-15

Multiple line ranges can be specified, and overlapping ranges are allowed.

git blame -L 10,30 -L 12,80 -L 120,+10 -L ^/void main/,+40

Section 42.2: To find out who changed a file
// Shows the author and commit per line of specified file
git blame test.c

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 140

// Shows the author email and commit per line of specified
git blame -e test.c file

// Limits the selection of lines by specified range
git blame -L 1,10 test.c

Section 42.3: Show the commit that last modified a line
git blame <file>

will show the file with each line annotated with the commit that last modified it.

Section 42.4: Ignore whitespace-only changes
Sometimes repos will have commits that only adjust whitespace, for example fixing indentation or switching
between tabs and spaces. This makes it difficult to find the commit where the code was actually written.

git blame -w

will ignore whitespace-only changes to find where the line really came from.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 141

Chapter 43: Git revisions syntax
Section 43.1: Specifying revision by object name
$ git show dae86e1950b1277e545cee180551750029cfe735
$ git show dae86e19

You can specify revision (or in truth any object: tag, tree i.e. directory contents, blob i.e. file contents) using SHA-1
object name, either full 40-byte hexadecimal string, or a substring that is unique to the repository.

Section 43.2: Symbolic ref names: branches, tags, remote-
tracking branches
$ git log master # specify branch
$ git show v1.0 # specify tag
$ git show HEAD # specify current branch
$ git show origin # specify default remote-tracking branch for remote 'origin'

You can specify revision using a symbolic ref name, which includes branches (for example 'master', 'next', 'maint'),
tags (for example 'v1.0', 'v0.6.3-rc2'), remote-tracking branches (for example 'origin', 'origin/master'), and special
refs such as 'HEAD' for current branch.

If the symbolic ref name is ambiguous, for example if you have both branch and tag named 'fix' (having branch and
tag with the same name is not recommended), you need to specify the kind of ref you want to use:

$ git show heads/fix # or 'refs/heads/fix', to specify branch
$ git show tags/fix # or 'refs/tags/fix', to specify tag

Section 43.3: The default revision: HEAD
$ git show # equivalent to 'git show HEAD'

'HEAD' names the commit on which you based the changes in the working tree, and is usually the symbolic name
for the current branch. Many (but not all) commands that take revision parameter defaults to 'HEAD' if it is missing.

Section 43.4: Reflog references: <refname>@{<n>}
$ git show @{1} # uses reflog for current branch
$ git show master@{1} # uses reflog for branch 'master'
$ git show HEAD@{1} # uses 'HEAD' reflog

A ref, usually a branch or HEAD, followed by the suffix @ with an ordinal specification enclosed in a brace pair (e.g.
{1}, {15}) specifies the n-th prior value of that ref in your local repository. You can check recent reflog entries with
git reflog command, or --walk-reflogs / -g option to git log.

$ git reflog
08bb350 HEAD@{0}: reset: moving to HEAD^
4ebf58d HEAD@{1}: commit: gitweb(1): Document query parameters
08bb350 HEAD@{2}: pull: Fast-forward
f34be46 HEAD@{3}: checkout: moving from af40944bda352190f05d22b7cb8fe88beb17f3a7 to master
af40944 HEAD@{4}: checkout: moving from master to v2.6.3

$ git reflog gitweb-docs

https://www.kernel.org/pub/software/scm/git/docs/git-reflog.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 142

4ebf58d gitweb-docs@{0}: branch: Created from master

Note: using reflogs practically replaced older mechanism of utilizing ORIG_HEAD ref (roughly equivalent to HEAD@{1}).

Section 43.5: Reflog references: <refname>@{<date>}
$ git show master@{yesterday}
$ git show HEAD@{5 minutes ago} # or HEAD@{5.minutes.ago}

A ref followed by the suffix @ with a date specification enclosed in a brace pair (e.g. {yesterday}, {1 month 2 weeks
3 days 1 hour 1 second ago} or {1979-02-26 18:30:00}) specifies the value of the ref at a prior point in time (or
closest point to it). Note that this looks up the state of your local ref at a given time; e.g., what was in your local
'master' branch last week.

You can use git reflog with a date specifier to look up exact time where you did something to given ref in the
local repository.

$ git reflog HEAD@{now}
08bb350 HEAD@{Sat Jul 23 19:48:13 2016 +0200}: reset: moving to HEAD^
4ebf58d HEAD@{Sat Jul 23 19:39:20 2016 +0200}: commit: gitweb(1): Document query parameters
08bb350 HEAD@{Sat Jul 23 19:26:43 2016 +0200}: pull: Fast-forward

Section 43.6: Tracked / upstream branch:
<branchname>@{upstream}
$ git log @{upstream}.. # what was done locally and not yet published, current branch
$ git show master@{upstream} # show upstream of branch 'master'

The suffix @{upstream} appended to a branchname (short form <branchname>@{u}) refers to the branch that the
branch specified by branchname is set to build on top of (configured with branch.<name>.remote and
branch.<name>.merge, or with git branch --set-upstream-to=<branch>). A missing branchname defaults to the
current one.

Together with syntax for revision ranges it is very useful to see the commits your branch is ahead of upstream
(commits in your local repository not yet present upstream), and what commits you are behind (commits in
upstream not merged into local branch), or both:

$ git log --oneline @{u}..
$ git log --oneline ..@{u}
$ git log --oneline --left-right @{u}... # same as ...@{u}

Section 43.7: Commit ancestry chain: <rev>^, <rev>~<n>, etc
$ git reset --hard HEAD^ # discard last commit
$ git rebase --interactive HEAD~5 # rebase last 4 commits

A suffix ^ to a revision parameter means the first parent of that commit object. ^<n> means the <n>-th parent (i.e.
<rev>^ is equivalent to <rev>^1).

A suffix ~<n> to a revision parameter means the commit object that is the <n>-th generation ancestor of the named
commit object, following only the first parents. This means that for example <rev>~3 is equivalent to <rev>^^^. As a
shortcut, <rev>~ means <rev>~1, and is equivalent to <rev>^1, or <rev>^ in short.

https://www.kernel.org/pub/software/scm/git/docs/git-reflog.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 143

This syntax is composable.

To find such symbolic names you can use the git name-rev command:

$ git name-rev 33db5f4d9027a10e477ccf054b2c1ab94f74c85a
33db5f4d9027a10e477ccf054b2c1ab94f74c85a tags/v0.99~940

Note that --pretty=oneline and not --oneline must be used in the following example

$ git log --pretty=oneline | git name-rev --stdin --name-only
master Sixth batch of topics for 2.10
master~1 Merge branch 'ls/p4-tmp-refs'
master~2 Merge branch 'js/am-call-theirs-theirs-in-fallback-3way'
[...]
master~14^2 sideband.c: small optimization of strbuf usage
master~16^2 connect: read $GIT_SSH_COMMAND from config file
[...]
master~22^2~1 t7810-grep.sh: fix a whitespace inconsistency
master~22^2~2 t7810-grep.sh: fix duplicated test name

Section 43.8: Dereferencing branches and tags: <rev>^0,
<rev>^{<type>}
In some cases the behavior of a command depends on whether it is given branch name, tag name, or an arbitrary
revision. You can use "de-referencing" syntax if you need the latter.

A suffix ^ followed by an object type name (tag, commit, tree, blob) enclosed in brace pair (for example
v0.99.8^{commit}) means dereference the object at <rev> recursively until an object of type <type> is found or the
object cannot be dereferenced anymore. <rev>^0 is a short-hand for <rev>^{commit}.

$ git checkout HEAD^0 # equivalent to 'git checkout --detach' in modern Git

A suffix ^ followed by an empty brace pair (for example v0.99.8^{}) means to dereference the tag recursively until
a non-tag object is found.

Compare

$ git show v1.0
$ git cat-file -p v1.0
$ git replace --edit v1.0

with

$ git show v1.0^{}
$ git cat-file -p v1.0^{}
$ git replace --edit v1.0^{}

Section 43.9: Youngest matching commit: <rev>^{/<text>},
:/<text>
$ git show HEAD^{/fix nasty bug} # find starting from HEAD
$ git show ':/fix nasty bug' # find starting from any branch

A colon (':'), followed by a slash ('/'), followed by a text, names a commit whose commit message matches the
specified regular expression. This name returns the youngest matching commit which is reachable from any ref.

https://www.kernel.org/pub/software/scm/git/docs/git-name-rev.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 144

The regular expression can match any part of the commit message. To match messages starting with a string, one
can use e.g. :/^foo. The special sequence :/! is reserved for modifiers to what is matched. :/!-foo performs a
negative match, while :/!!foo matches a literal ! character, followed by foo.

A suffix ^ to a revision parameter, followed by a brace pair that contains a text led by a slash, is the same as the
:/<text> syntax below that it returns the youngest matching commit which is reachable from the <rev> before ^.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 145

Chapter 44: Worktrees
Parameter Details

-f --force By default, add refuses to create a new working tree when <branch> is already checked
out by another working tree. This option overrides that safeguard.

-b <new-branch> -B
<new-branch>

With add, create a new branch named <new-branch> starting at <branch>, and check out
<new-branch> into the new working tree. If <branch> is omitted, it defaults to HEAD. By
default, -b refuses to create a new branch if it already exists. -B overrides this safeguard,
resetting <new-branch> to <branch>.

--detach With add, detach HEAD in the new working tree.

--[no-] checkout By default, add checks out <branch>, however, --no-checkout can be used to suppress
checkout in order to make customizations, such as configuring sparse-checkout.

-n --dry-run With prune, do not remove anything; just report what it would remove.

--porcelain With list, output in an easy-to-parse format for scripts. This format will remain stable
across Git versions and regardless of user configuration.

-v --verbose With prune, report all removals.

--expire <time> With prune, only expire unused working trees older than <time>.

Section 44.1: Using a worktree
You are right in the middle of working on a new feature, and your boss comes in demanding that you fix something
immediately. You may typically want use git stash to store your changes away temporarily. However, at this point
your working tree is in a state of disarray (with new, moved, and removed files, and other bits and pieces strewn
around) and you don't want to disturb your progress.

By adding a worktree, you create a temporary linked working tree to make the emergency fix, remove it when done,
and then resume your earlier coding session:

$ git worktree add -b emergency-fix ../temp master
$ pushd ../temp
... work work work ...
$ git commit -a -m 'emergency fix for boss'
$ popd
$ rm -rf ../temp
$ git worktree prune

NOTE: In this example, the fix still is in the emergency-fix branch. At this point you probably want to git merge or
git format-patch and afterwards remove the emergency-fix branch.

Section 44.2: Moving a worktree
Currently (as of version 2.11.0) there is no built-in functionality to move an already existing worktree. This is listed
as an official bug (see https://git-scm.com/docs/git-worktree#_bugs).

To get around this limitation it is possible to perform manual operations directly in the .git reference files.

In this example, the main copy of the repo is living at /home/user/project-main and the secondary worktree is
located at /home/user/project-1 and we want to move it to /home/user/project-2.

Don't perform any git command in between these steps, otherwise the garbage collector might be triggered and
the references to the secondary tree can be lost. Perform these steps from the start until the end without
interruption:

https://git-scm.com/docs/git-worktree#_bugs)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 146

Change the worktree's .git file to point to the new location inside the main tree. The file1.
/home/user/project-1/.git should now contain the following:

gitdir: /home/user/project-main/.git/worktrees/project-2

Rename the worktree inside the .git directory of the main project by moving the worktree's directory that2.
exists in there:

$ mv /home/user/project-main/.git/worktrees/project-1 /home/user/project-
main/.git/worktrees/project-2

Change the reference inside /home/user/project-main/.git/worktrees/project-2/gitdir to point to the3.
new location. In this example, the file would have the following contents:

/home/user/project-2/.git

Finally, move your worktree to the new location:4.

$ mv /home/user/project-1 /home/user/project-2

If you have done everything correctly, listing the existing worktrees should refer to the new location:

$ git worktree list
/home/user/project-main 23f78ad [master]
/home/user/project-2 78ac3f3 [branch-name]

It should now also be safe to run git worktree prune.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 147

Chapter 45: Git Remote
Parameter Details

-v, --verbose Run verbosely.

-m <master> Sets head to remote's <master> branch

--mirror=fetch Refs will not be stored in refs/remotes namespace, but instead will be mirrored in the local repo

--mirror=push git push will behave as if --mirror was passed

--no-tags git fetch <name> does not import tags from the remote repo

-t <branch> Specifies the remote to track only <branch>

-f git fetch <name> is run immediately after remote is set up

--tags git fetch <name> imports every tag from the remote repo

-a, --auto The symbolic-ref's HEAD is set to the same branch as the remote's HEAD

-d, --delete All listed refs are deleted from the remote repository

--add Adds <name> to list of currently tracked branches (set-branches)

--add Instead of changing some URL, new URL is added (set-url)

--all Push all branches.

--delete All urls matching <url> are deleted. (set-url)

--push Push URLS are manipulated instead of fetch URLS

-n The remote heads are not queried first with git ls-remote <name>, cached information is used
instead

--dry-run report what branches will be pruned, but do not actually prune them

--prune Remove remote branches that don't have a local counterpart

Section 45.1: Display Remote Repositories
To list all configured remote repositories, use git remote.

It shows the short name (aliases) of each remote handle that you have configured.

$ git remote
premium
premiumPro
origin

To show more detailed information, the --verbose or -v flag can be used. The output will include the URL and the
type of the remote (push or pull):

$ git remote -v
premiumPro https://github.com/user/CatClickerPro.git (fetch)
premiumPro https://github.com/user/CatClickerPro.git (push)
premium https://github.com/user/CatClicker.git (fetch)
premium https://github.com/user/CatClicker.git (push)
origin https://github.com/ud/starter.git (fetch)
origin https://github.com/ud/starter.git (push)

Section 45.2: Change remote url of your Git repository
You may want to do this if the remote repository is migrated. The command for changing the remote url is:

git remote set-url

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 148

It takes 2 arguments: an existing remote name (origin, upstream) and the url.

Check your current remote url:

git remote -v
origin https://bitbucket.com/develop/myrepo.git (fetch)
origin https://bitbucket.com/develop/myrepo.git (push)

Change your remote url:

git remote set-url origin https://localserver/develop/myrepo.git

Check again your remote url:

git remote -v
origin https://localserver/develop/myrepo.git (fetch)
origin https://localserver/develop/myrepo.git (push)

Section 45.3: Remove a Remote Repository
Remove the remote named <name>. All remote-tracking branches and configuration settings for the remote are
removed.

To remove a remote repository dev:

git remote rm dev

Section 45.4: Add a Remote Repository
To add a remote, use git remote add in the root of your local repository.

For adding a remote Git repository <url> as an easy short name <name> use

git remote add <name> <url>

The command git fetch <name> can then be used to create and update remote-tracking branches
<name>/<branch>.

Section 45.5: Show more information about remote
repository
You can view more information about a remote repository by git remote show <remote repository alias>

git remote show origin

result:

remote origin
Fetch URL: https://localserver/develop/myrepo.git
Push URL: https://localserver/develop/myrepo.git
HEAD branch: master
Remote branches:
 master tracked
Local branches configured for 'git pull':
 master merges with remote master

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 149

Local refs configured for 'git push':
 master pushes to master (up to date)

Section 45.6: Rename a Remote Repository
Rename the remote named <old> to <new>. All remote-tracking branches and configuration settings for the remote
are updated.

To rename a remote branch name dev to dev1 :

git remote rename dev dev1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 150

Chapter 46: Git Large File Storage (LFS)
Section 46.1: Declare certain file types to store externally
A common workflow for using Git LFS is to declare which files are intercepted through a rules-based system, just
like .gitignore files.

Much of time, wildcards are used to pick certain file-types to blanket track.

e.g. git lfs track "*.psd"

When a file matching the above pattern is added them committed, when it is then pushed to the remote, it will be
uploaded separately, with a pointer replacing the file in the remote repository.

After a file has been tracked with lfs, your .gitattributes file will be updated accordingly. Github recommends
committing your local .gitattributes file, rather than working with a global .gitattributes file, to help ensure
you don't have any issues when working with different projects.

Section 46.2: Set LFS config for all clones
To set LFS options that apply to all clones, create and commit a file named .lfsconfig at the repository root. This
file can specify LFS options the same way as allowed in .git/config.

For example, to exclude a certain file from LFS fetches be default, create and commit .lfsconfig with the following
contents:

[lfs]
 fetchexclude = ReallyBigFile.wav

Section 46.3: Install LFS
Download and install, either via Homebrew, or from website.

For Brew,
brew install git-lfs
git lfs install

Often you will also need to do some setup on the service that hosts your remote to allow it to work with lfs. This will
be different for each host, but will likely just be checking a box saying you want to use git lfs.

https://git-lfs.github.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 151

Chapter 47: Git Patch
Parameter Details

(<mbox>|<Maildir>)...
The list of mailbox files to read patches from. If you do not supply this
argument, the command reads from the standard input. If you supply
directories, they will be treated as Maildirs.

-s, --signoff Add a Signed-off-by: line to the commit message, using the committer
identity of yourself.

-q, --quiet Be quiet. Only print error messages.

-u, --utf8

Pass -u flag to git mailinfo. The proposed commit log message taken
from the e-mail is re-coded into UTF-8 encoding (configuration variable
i18n.commitencoding can be used to specify project’s preferred
encoding if it is not UTF-8). You can use --no-utf8 to override this.

--no-utf8 Pass -n flag to git mailinfo.

-3, --3way
When the patch does not apply cleanly, fall back on 3-way merge if the
patch records the identity of blobs it is supposed to apply to and we have
those blobs available locally.

--ignore-date, --ignore-space-change, --
ignore-whitespace, --
whitespace=<option>, -C<n>, -p<n>, --
directory=<dir>, --exclude=<path>, --
include=<path>, --reject

These flags are passed to the git apply program that applies the patch.

--patch-format

By default the command will try to detect the patch format automatically.
This option allows the user to bypass the automatic detection and specify
the patch format that the patch(es) should be interpreted as. Valid
formats are mbox, stgit, stgit-series, and hg.

-i, --interactive Run interactively.

--committer-date-is-author-date

By default the command records the date from the e-mail message as
the commit author date, and uses the time of commit creation as the
committer date. This allows the user to lie about the committer date by
using the same value as the author date.

--ignore-date

By default the command records the date from the e-mail message as
the commit author date, and uses the time of commit creation as the
committer date. This allows the user to lie about the author date by using
the same value as the committer date.

--skip Skip the current patch. This is only meaningful when restarting an
aborted patch.

-S[<keyid>], --gpg-sign[=<keyid>] GPG-sign commits.

--continue, -r, --resolved

After a patch failure (e.g. attempting to apply conflicting patch), the user
has applied it by hand and the index file stores the result of the
application. Make a commit using the authorship and commit log
extracted from the e-mail message and the current index file, and
continue.

--resolvemsg=<msg>

When a patch failure occurs, <msg> will be printed to the screen before
exiting. This overrides the standard message informing you to use --
continue or --skip to handle the failure. This is solely for internal use
between git rebase and git am.

--abort Restore the original branch and abort the patching operation.

Section 47.1: Creating a patch
To create a patch, there are two steps.

Make your changes and commit them.1.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 152

Run git format-patch <commit-reference> to convert all commits since the commit <commit-reference>2.
(not including it) into patch files.

For example, if patches should be generated from the latest two commits:

git format-patch HEAD~~

This will create 2 files, one for each commit since HEAD~~, like this:

0001-hello_world.patch
0002-beginning.patch

Section 47.2: Applying patches
We can use git apply some.patch to have the changes from the .patch file applied to your current working
directory. They will be unstaged and need to be committed.

To apply a patch as a commit (with its commit message), use

git am some.patch

To apply all patch files to the tree:

git am *.patch

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 153

Chapter 48: Git statistics
Parameter Details

-n, --numbered Sort output according to the number of commits per author instead of
alphabetic order

-s, --summary Only provide a commit count summary

-e, --email Show the email address of each author

--format[=<format>]
Instead of the commit subject, use some other information to describe each
commit. <format> can be any string accepted by the --format option of git
log.

-w[<width>[,<indent1>[,<indent2>]]]
Linewrap the output by wrapping each line at width. The first line of each
entry is indented by indent1 number of spaces, and subsequent lines are
indented by indent2 spaces.

<revision range> Show only commits in the specified revision range. Default to the whole
history until the current commit.

[--] <path>
Show only commits that explain how the files matching path came to be.
Paths may need to be prefixed with "-- " to separate them from options or the
revision range.

Section 48.1: Lines of code per developer
git ls-tree -r HEAD | sed -Ee 's/^.{53}//' | \
while read filename; do file "$filename"; done | \
grep -E ': .*text' | sed -E -e 's/: .*//' | \
while read filename; do git blame --line-porcelain "$filename"; done | \
sed -n 's/^author //p' | \
sort | uniq -c | sort -rn

Section 48.2: Listing each branch and its last revision's date
for k in `git branch -a | sed s/^..//`; do echo -e `git log -1 --pretty=format:"%Cgreen%ci
%Cblue%cr%Creset" $k --`\\t"$k";done | sort

Section 48.3: Commits per developer
Git shortlog is used to summarize the git log outputs and group the commits by author.

By default, all commit messages are shown but argument --summary or -s skips the messages and gives a list of
authors with their total number of commits.

--numbered or -n changes the ordering from alphabetical (by author ascending) to number of commits descending.

git shortlog -sn #Names and Number of commits

git shortlog -sne #Names along with their email ids and the Number of commits

or

git log --pretty=format:%ae \
| gawk -- '{ ++c[$0]; } END { for(cc in c) printf "%5d %s\n",c[cc],cc; }'

Note: Commits by the same person may not be grouped together where their name and/or email address has
been spelled differently. For example John Doe and Johnny Doe will appear separately in the list. To resolve this,

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 154

refer to the .mailmap feature.

Section 48.4: Commits per date
git log --pretty=format:"%ai" | awk '{print " : "$1}' | sort -r | uniq -c

Section 48.5: Total number of commits in a branch
git log --pretty=oneline |wc -l

Section 48.6: List all commits in pretty format
git log --pretty=format:"%Cgreen%ci %Cblue%cn %Cgreen%cr%Creset %s"

This will give a nice overview of all commits (1 per line) with date, user and commit message.

The --pretty option has many placeholders, each starting with %. All options can be found here

Section 48.7: Find All Local Git Repositories on Computer
To list all the git repository locations on your you can run the following

find $HOME -type d -name ".git"

Assuming you have locate, this should be much faster:

locate .git |grep git$

If you have gnu locate or mlocate, this will select only the git dirs:

locate -ber \\.git$

Section 48.8: Show the total number of commits per author
In order to get the total number of commits that each developer or contributor has made on a repository, you can
simply use the git shortlog:

git shortlog -s

which provides the author names and number of commits by each one.

Additionally, if you want to have the results calculated on all branches, add --all flag to the command:

git shortlog -s --all

https://git-scm.com/docs/pretty-formats
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 155

Chapter 49: git send-email
Section 49.1: Use git send-email with Gmail
Background: if you work on a project like the Linux kernel, rather than make a pull request you will need to submit
your commits to a listserv for review. This entry details how to use git-send email with Gmail.

Add the following to your .gitconfig file:

[sendemail]
 smtpserver = smtp.googlemail.com
 smtpencryption = tls
 smtpserverport = 587
 smtpuser = name@gmail.com

Then on the web: Go to Google -> My Account -> Connected Apps & Sites -> Allow less secure apps -> Switch ON

To create a patch set:

git format-patch HEAD~~~~ --subject-prefix="PATCH <project-name>"

Then send the patches to a listserv:

git send-email --annotate --to project-developers-list@listserve.example.com 00*.patch

To create and send updated version (version 2 in this example) of the patch:

git format-patch -v 2 HEAD~~~~
git send-email --to project-developers-list@listserve.example.com v2-00*.patch

Section 49.2: Composing

--from * Email From:
--[no-]to * Email To:
--[no-]cc * Email Cc:
--[no-]bcc * Email Bcc:
--subject * Email "Subject:"
--in-reply-to * Email "In-Reply-To:"
--[no-]xmailer * Add "X-Mailer:" header (default).
--[no-]annotate * Review each patch that will be sent in an editor.
--compose * Open an editor for introduction.
--compose-encoding * Encoding to assume for introduction.
--8bit-encoding * Encoding to assume 8bit mails if undeclared
--transfer-encoding * Transfer encoding to use (quoted-printable, 8bit, base64)

Section 49.3: Sending patches by mail
Suppose you’ve got a lot of commit against a project (here ulogd2, official branch is git-svn) and that you wan to
send your patchset to the Mailling list devel@netfilter.org. To do so, just open a shell at the root of the git directory
and use:

git format-patch --stat -p --raw --signoff --subject-prefix="ULOGD PATCH" -o /tmp/ulogd2/ -n git-
svn

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 156

git send-email --compose --no-chain-reply-to --to devel@netfilter.org /tmp/ulogd2/

First command will create a serie of mail from patches in /tmp/ulogd2/ with statistic report and second will start
your editor to compose an introduction mail to the patchset. To avoid awful threaded mail series, one can use :

git config sendemail.chainreplyto false

source

https://home.regit.org/technical-articles/git-for-the-newbie/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 157

Chapter 50: Git GUI Clients
Section 50.1: gitk and git-gui

When you install Git, you also get its visual tools, gitk and git-gui.

gitk is a graphical history viewer. Think of it like a powerful GUI shell over git log and git grep. This is the
tool to use when you’re trying to find something that happened in the past, or visualize your project’s
history.

Gitk is easiest to invoke from the command-line. Just cd into a Git repository, and type:

$ gitk [git log options]

Gitk accepts many command-line options, most of which are passed through to the underlying git log
action. Probably one of the most useful is the --all flag, which tells gitk to show commits reachable from
any ref, not just HEAD. Gitk’s interface looks like this:

Figure 1-1. The gitk history viewer.

On the top is something that looks a bit like the output of git log --graph; each dot represents a commit,
the lines represent parent relationships, and refs are shown as colored boxes. The yellow dot represents
HEAD, and the red dot represents changes that are yet to become a commit. At the bottom is a view of
the selected commit; the comments and patch on the left, and a summary view on the right. In between is
a collection of controls used for searching history.

You can access many git related functions via right-click on a branch name or a commit message. For
example checking out a different branch or cherry pick a commit is easily done with one click.

http://i.stack.imgur.com/Q6oU3.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 158

git-gui, on the other hand, is primarily a tool for crafting commits. It, too, is easiest to invoke from the
command line:

$ git gui

And it looks something like this:

The git-gui commit tool.

Figure 1-2. The git-gui commit tool.

On the left is the index; unstaged changes are on top, staged changes on the bottom. You can move
entire files between the two states by clicking on their icons, or you can select a file for viewing by clicking
on its name.

At top right is the diff view, which shows the changes for the currently-selected file. You can stage
individual hunks (or individual lines) by right-clicking in this area.

At the bottom right is the message and action area. Type your message into the text box and click
“Commit” to do something similar to git commit. You can also choose to amend the last commit by
choosing the “Amend” radio button, which will update the “Staged Changes” area with the contents of the
last commit. Then you can simply stage or unstage some changes, alter the commit message, and click
“Commit” again to replace the old commit with a new one.

gitk and git-gui are examples of task-oriented tools. Each of them is tailored for a specific purpose
(viewing history and creating commits, respectively), and omit the features not necessary for that task.

Source: https://git-scm.com/book/en/v2/Git-in-Other-Environments-Graphical-Interfaces

Section 50.2: GitHub Desktop
Website: https://desktop.github.com
Price: free

http://i.stack.imgur.com/P0SPX.png
https://git-scm.com/book/en/v2/Git-in-Other-Environments-Graphical-Interfaces
https://desktop.github.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 159

Platforms: OS X and Windows
Developed by: GitHub

Section 50.3: Git Kraken
Website:https://www.gitkraken.com
Price: $60/years (free for For open source, education, non-profit, startups or personal use)
Platforms: Linux, OS X, Windows
Developed by: Axosoft

Section 50.4: SourceTree
Website: https://www.sourcetreeapp.com
Price: free (account is necessary)
Platforms: OS X and Windows
Developer: Atlassian

Section 50.5: Git Extensions
Website: https://gitextensions.github.io
Price: free
Platform: Windows

Section 50.6: SmartGit
Website: http://www.syntevo.com/smartgit/
Price: Free for non-commercial use only. A perpetual license costs 99 USD
Platforms: Linux, OS X, Windows
Developed by: syntevo

https://github.com
https://www.gitkraken.com
https://www.axosoft.com/lp-gitkraken
https://www.sourcetreeapp.com
https://www.atlassian.com/
https://gitextensions.github.io
http://www.syntevo.com/smartgit/
http://www.syntevo.com/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 160

Chapter 51: Reflog - Restoring commits
not shown in git log
Section 51.1: Recovering from a bad rebase
Suppose that you had started an interactive rebase:

git rebase --interactive HEAD~20

and by mistake, you squashed or dropped some commits that you didn't want to lose, but then completed the
rebase. To recover, do git reflog, and you might see some output like this:

aaaaaaa HEAD@{0} rebase -i (finish): returning to refs/head/master
bbbbbbb HEAD@{1} rebase -i (squash): Fix parse error
...
ccccccc HEAD@{n} rebase -i (start): checkout HEAD~20
ddddddd HEAD@{n+1} ...
...

In this case, the last commit, ddddddd (or HEAD@{n+1}) is the tip of your pre-rebase branch. Thus, to recover that
commit (and all parent commits, including those accidentally squashed or dropped), do:

$ git checkout HEAD@{n+1}

You can then create a new branch at that commit with git checkout -b [branch]. See Branching for more
information.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 161

Chapter 52: TortoiseGit
Section 52.1: Squash commits
The easy way

This won't work if there are merge commits in your selection

The advanced way

Start the rebase dialog:

https://i.stack.imgur.com/DCM6Y.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 162

Section 52.2: Assume unchanged
If a file is changed, but you don't like to commit it, set the file as "Assume unchanged"

https://i.stack.imgur.com/ZONM9.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 163

Revert "Assume unchanged"

Need some steps:

https://i.stack.imgur.com/uOMrs.png
https://i.stack.imgur.com/nryX6.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 164

Section 52.3: Ignoring Files and Folders
Those that are using TortioseGit UI click Right Mouse on the file (or folder) you want to ignore -> TortoiseGit
-> Delete and add to ignore list, here you can choose to ignore all files of that type or this specific file -> dialog
will pop out Click Ok and you should be done.

https://i.stack.imgur.com/jnTC1.png
https://i.stack.imgur.com/qMTwB.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 165

Section 52.4: Branching
For those that are using UI to branch click Right Mouse on repository then Tortoise Git -> Create Branch...

http://i.stack.imgur.com/ZcQ5E.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 166

New window will open -> Give branch a name -> Tick the box Switch to new branch (Chances are you want to
start working with it after branching). -> Click OK and you should be done.

http://i.stack.imgur.com/3Cdaj.png
http://i.stack.imgur.com/Sw1xl.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 167

Chapter 53: External merge and ditools
Section 53.1: Setting up KDi3 as merge tool
The following should be added to your global .gitconfig file

[merge]
 tool = kdiff3
[mergetool "kdiff3"]
 path = D:/Program Files (x86)/KDiff3/kdiff3.exe
 keepBackup = false
 keepbackup = false
 trustExitCode = false

Remember to set the path property to point to the directory where you have installed KDiff3

Section 53.2: Setting up KDi3 as di tool
[diff]
 tool = kdiff3
 guitool = kdiff3
[difftool "kdiff3"]
 path = D:/Program Files (x86)/KDiff3/kdiff3.exe
 cmd = \"D:/Program Files (x86)/KDiff3/kdiff3.exe\" \"$LOCAL\" \"$REMOTE\"

Section 53.3: Setting up an IntelliJ IDE as merge tool
(Windows)
[merge]
 tool = intellij
[mergetool "intellij"]
 cmd = cmd \"/C D:\\workspace\\tools\\symlink\\idea\\bin\\idea.bat merge $(cd $(dirname
"$LOCAL") && pwd)/$(basename "$LOCAL") $(cd $(dirname "$REMOTE") && pwd)/$(basename "$REMOTE") $(cd
$(dirname "$BASE") && pwd)/$(basename "$BASE") $(cd $(dirname "$MERGED") && pwd)/$(basename
"$MERGED")\"
 keepBackup = false
 keepbackup = false
 trustExitCode = true

The one gotcha here is that this cmd property does not accept any weird characters in the path. If your IDE's install
location has weird characters in it (e.g. it's installed in Program Files (x86), you'll have to create a symlink

Section 53.4: Setting up an IntelliJ IDE as di tool (Windows)
[diff]
 tool = intellij
 guitool = intellij
[difftool "intellij"]
 path = D:/Program Files (x86)/JetBrains/IntelliJ IDEA 2016.2/bin/idea.bat
 cmd = cmd \"/C D:\\workspace\\tools\\symlink\\idea\\bin\\idea.bat diff $(cd $(dirname "$LOCAL")
&& pwd)/$(basename "$LOCAL") $(cd $(dirname "$REMOTE") && pwd)/$(basename "$REMOTE")\"

The one gotcha here is that this cmd property does not accept any weird characters in the path. If your IDE's install
location has weird characters in it (e.g. it's installed in Program Files (x86), you'll have to create a symlink

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 168

Section 53.5: Setting up Beyond Compare
You can set the path to bcomp.exe

git config --global difftool.bc3.path 'c:\Program Files (x86)\Beyond Compare 3\bcomp.exe'

and configure bc3 as default

git config --global diff.tool bc3

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 169

Chapter 54: Update Object Name in
Reference
Section 54.1: Update Object Name in Reference
Use

Update the object name which is stored in reference

SYNOPSIS
git update-ref [-m <reason>] (-d <ref> [<oldvalue>] | [--no-deref] [--create-reflog] <ref>
<newvalue> [<oldvalue>] | --stdin [-z])

General Syntax

Dereferencing the symbolic refs, update the current branch head to the new object.1.

git update-ref HEAD <newvalue>

Stores the newvalue in ref, after verify that the current value of the ref matches oldvalue.2.

git update-ref refs/head/master <newvalue> <oldvalue>

above syntax updates the master branch head to newvalue only if its current value is oldvalue.

Use -d flag to deletes the named <ref> after verifying it still contains <oldvalue>.

Use --create-reflog, update-ref will create a reflog for each ref even if one would not ordinarily be created.

Use -z flag to specify in NUL-terminated format, which has values like update, create, delete, verify.

Update

Set <ref> to <newvalue> after verifying <oldvalue>, if given. Specify a zero <newvalue> to ensure the ref does not
exist after the update and/or a zero <oldvalue> to make sure the ref does not exist before the update.

Create

Create <ref> with <newvalue> after verifying it does not exist. The given <newvalue> may not be zero.

Delete

Delete <ref> after verifying it exists with <oldvalue>, if given. If given, <oldvalue> may not be zero.

Verify

Verify <ref> against <oldvalue> but do not change it. If <oldvalue> zero or missing, the ref must not exist.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 170

Chapter 55: Git Branch Name on Bash
Ubuntu
This documentation deals with the branch name of the git on the bash terminal. We developers need to find the
git branch name very frequently. We can add the branch name along with the path to the current directory.

Section 55.1: Branch Name in terminal
What is PS1

PS1 denotes Prompt String 1. It is the one of the prompt available in Linux/UNIX shell. When you open your
terminal, it will display the content defined in PS1 variable in your bash prompt. In order to add branch name to
bash prompt we have to edit the PS1 variable (set value of PS1 in ~/.bash_profile).

Display git branch name

Add following lines to your ~/.bash_profile

git_branch() {
 git branch 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/ (\1)/'
}
export PS1="\u@\h \[\033[32m\]\w\[\033[33m\]\$(git_branch)\[\033[00m\] $ "

This git_branch function will find the branch name we are on. Once we are done with this changes we can navigate
to the git repo on the terminal and will be able to see the branch name.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 171

Chapter 56: Git Client-Side Hooks
Like many other Version Control Systems, Git has a way to fire off custom scripts when certain important actions
occur. There are two groups of these hooks: client-side and server-side. Client-side hooks are triggered by
operations such as committing and merging, while server-side hooks run on network operations such as receiving
pushed commits. You can use these hooks for all sorts of reasons.

Section 56.1: Git pre-push hook
pre-push script is called by git push after it has checked the remote status, but before anything has been pushed.
If this script exits with a non-zero status nothing will be pushed.

This hook is called with the following parameters:

 $1 -- Name of the remote to which the push is being done (Ex: origin)
$2 -- URL to which the push is being done (Ex: https://://.git)

Information about the commits which are being pushed is supplied as lines to the standard input in the form:

<local_ref> <local_sha1> <remote_ref> <remote_sha1>

Sample values:

local_ref = refs/heads/master
local_sha1 = 68a07ee4f6af8271dc40caae6cc23f283122ed11
remote_ref = refs/heads/master
remote_sha1 = efd4d512f34b11e3cf5c12433bbedd4b1532716f

Below example pre-push script was taken from default pre-push.sample which was automatically created when a
new repository is initialized with git init

This sample shows how to prevent push of commits where the log message starts
with "WIP" (work in progress).

remote="$1"
url="$2"

z40=00

while read local_ref local_sha remote_ref remote_sha
do
 if ["$local_sha" = $z40]
 then
 # Handle delete
 :
 else
 if ["$remote_sha" = $z40]
 then
 # New branch, examine all commits
 range="$local_sha"
 else
 # Update to existing branch, examine new commits
 range="$remote_sha..$local_sha"
 fi

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 172

 # Check for WIP commit
 commit=`git rev-list -n 1 --grep '^WIP' "$range"`
 if [-n "$commit"]
 then
 echo >&2 "Found WIP commit in $local_ref, not pushing"
 exit 1
 fi
 fi
done

exit 0

Section 56.2: Installing a Hook
The hooks are all stored in the hooks sub directory of the Git directory. In most projects, that’s .git/hooks.

To enable a hook script, put a file in the hooks subdirectory of your .git directory that is named appropriately
(without any extension) and is executable.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 173

Chapter 57: Git rerere
rerere (reuse recorded resolution) allows you to tell git to remember how you resolved a hunk conflict. This allows
it to be automatically resolved the next time that git encounters the same conflict.

Section 57.1: Enabling rerere
To enable rerere run the following command:

$ git config --global rerere.enabled true

This can be done in a specific repository as well as globally.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 174

Chapter 58: Change git repository name
If you change repository name on the remote side, such as your github or bitbucket, when you push your exisiting
code, you will see error: Fatal error, repository not found**.

Section 58.1: Change local setting
Go to terminal,

cd projectFolder
git remote -v (it will show previous git url)
git remote set-url origin https://username@bitbucket.org/username/newName.git
git remote -v (double check, it will show new git url)
git push (do whatever you want.)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 175

Chapter 59: Git Tagging
Like most Version Control Systems (VCSs), Git has the ability to tag specific points in history as being important.
Typically people use this functionality to mark release points (v1.0, and so on).

Section 59.1: Listing all available tags
Using the command git tag lists out all available tags:

$ git tag
<output follows>
v0.1
v1.3

Note: the tags are output in an alphabetical order.

One may also search for available tags:

$ git tag -l "v1.8.5*"
<output follows>
v1.8.5
v1.8.5-rc0
v1.8.5-rc1
v1.8.5-rc2
v1.8.5-rc3
v1.8.5.1
v1.8.5.2
v1.8.5.3
v1.8.5.4
v1.8.5.5

Section 59.2: Create and push tag(s) in GIT
Create a tag:

To create a tag on your current branch:

git tag < tagname >

This will create a local tag with the current state of the branch you are on.

To create a tag with some commit:

git tag tag-name commit-identifier

This will create a local tag with the commit-identifier of the branch you are on.

Push a commit in GIT:

Push an individual tag:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 176

git push origin tag-name

Push all the tags at once

git push origin --tags

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 177

Chapter 60: Tidying up your local and
remote repository
Section 60.1: Delete local branches that have been deleted on
the remote
To remote tracking between local and deleted remote branches use

git fetch -p

you can then use

git branch -vv

to see which branches are no longer being tracked.

Branches that are no longer being tracked will be in the form below, containing 'gone'

 branch 12345e6 [origin/branch: gone] Fixed bug

you can then use a combination of the above commands, looking for where 'git branch -vv' returns 'gone' then
using '-d' to delete the branches

git fetch -p && git branch -vv | awk '/: gone]/{print $1}' | xargs git branch -d

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 178

Chapter 61: di-tree
Compares the content and mode of blobs found via two tree objects.

Section 61.1: See the files changed in a specific commit
git diff-tree --no-commit-id --name-only -r COMMIT_ID

Section 61.2: Usage
git diff-tree [--stdin] [-m] [-c] [--cc] [-s] [-v] [--pretty] [-t] [-r] [--root] [<common-diff-
options>] <tree-ish> [<tree-ish>] [<path>...]

Option Explanation
-r diff recursively

--root include the initial commit as diff against /dev/null

Section 61.3: Common di options
Option Explanation

-z output diff-raw with lines terminated with NUL.

-p output patch format.

-u synonym for -p.

--patch-with-raw output both a patch and the diff-raw format.

--stat show diffstat instead of patch.

--numstat show numeric diffstat instead of patch.

--patch-with-stat output a patch and prepend its diffstat.

--name-only show only names of changed files.

--name-status show names and status of changed files.

--full-index show full object name on index lines.

--abbrev=<n> abbreviate object names in diff-tree header and diff-raw.

-R swap input file pairs.

-B detect complete rewrites.

-M detect renames.

-C detect copies.

--find-copies-harder try unchanged files as candidate for copy detection.

-l<n> limit rename attempts up to paths.

-O reorder diffs according to the .

-S find filepair whose only one side contains the string.

--pickaxe-all show all files diff when -S is used and hit is found.

-a --text treat all files as text.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 179

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Aaron Critchley Chapter 6
Aaron Skomra Chapter 49
aavrug Chapter 26
Abdullah Chapter 2
Abhijeet Kasurde Chapter 6
adarsh Chapter 16
Adi Lester Chapter 6
AER Chapters 12, 25 and 29
AesSedai101 Chapters 4, 11 and 53
Ahmed Metwally Chapter 2
Ajedi32 Chapter 11
Ala Eddine JEBALI Chapter 1
Alan Chapter 10
Alex Stuckey Chapter 46
Alexander Bird Chapter 12
Allan Burleson Chapter 1
Alu Chapter 50
ambes Chapter 45
Amitay Stern Chapters 1 and 10
anderas Chapters 6 and 12
AndiDog Chapter 16
andipla Chapter 44
Andrea Romagnoli Chapter 25
Andrew Sklyarevsky Chapter 10
Andy Hayden Chapters 1, 4, 7, 10 and 25
AnimiVulpis Chapters 1, 5 and 14
AnoE Chapter 24
Anthony Staunton Chapter 11
APerson Chapters 10 and 13
apidae Chapter 6
Aratz Chapter 2
Asaph Chapters 4 and 26
Asenar Chapters 11 and 13
Ates Goral Chapter 32
Atul Khanduri Chapters 17 and 59
Bad Chapter 14
bandi Chapters 10 and 16
Ben Chapter 5
Blundering Philosopher Chapter 25
BobTuckerman Chapter 14
Boggin Chapters 1, 7, 31 and 36
Božo Stojković Chapter 5
bpoiss Chapter 5
Braiam Chapter 5
brentonstrine Chapters 7 and 8
Brett Chapter 2
Brian Chapters 1 and 7

mailto:web@petercv.com
https://stackoverflow.com/users/4323812/
https://stackoverflow.com/users/646507/
https://stackoverflow.com/users/3129610/
https://stackoverflow.com/users/4089357/
https://stackoverflow.com/users/1075324/
https://stackoverflow.com/users/1068887/
https://stackoverflow.com/users/389966/
https://stackoverflow.com/users/4644817/
https://stackoverflow.com/users/1969198/
https://stackoverflow.com/users/2080069/
https://stackoverflow.com/users/1157054/
https://stackoverflow.com/users/1343790/
https://stackoverflow.com/users/37843/
https://stackoverflow.com/users/298051/
https://stackoverflow.com/users/10608/
https://stackoverflow.com/users/5703771/
https://stackoverflow.com/users/4256535/
https://stackoverflow.com/users/4052699/
https://stackoverflow.com/users/3676450/
https://stackoverflow.com/users/3198247/
https://stackoverflow.com/users/245706/
https://stackoverflow.com/users/5118212/
https://stackoverflow.com/users/1392008/
https://stackoverflow.com/users/894973/
https://stackoverflow.com/users/1240268/
https://stackoverflow.com/users/1988796/
https://stackoverflow.com/users/5227053/
https://stackoverflow.com/users/6619998/
https://stackoverflow.com/users/1757964/
https://stackoverflow.com/users/6578619/
https://stackoverflow.com/users/5186167/
https://stackoverflow.com/users/166339/
https://stackoverflow.com/users/724027/
https://stackoverflow.com/users/23501/
https://stackoverflow.com/users/2945616/
https://stackoverflow.com/users/4383472/
https://stackoverflow.com/users/49388/
https://stackoverflow.com/users/4070984/
https://stackoverflow.com/users/2430414/
https://stackoverflow.com/users/3266897/
https://stackoverflow.com/users/444244/
https://stackoverflow.com/users/4936137/
https://stackoverflow.com/users/4936137/
https://stackoverflow.com/users/4936137/
https://stackoverflow.com/users/4936137/
https://stackoverflow.com/users/2039482/
https://stackoverflow.com/users/792066/
https://stackoverflow.com/users/925897/
https://stackoverflow.com/users/2483/
https://stackoverflow.com/users/938380/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 180

Brian Hinchey Chapter 26
bstpierre Chapter 11
bud Chapters 17, 26 and 28
Cache Staheli Chapters 5, 10 and 13
Caleb Brinkman Chapters 3 and 16
Charlie Egan Chapter 6
Chin Huang Chapter 20
Christiaan Maks Chapter 24
Cody Guldner Chapters 10 and 29
Collin M Chapter 5
ComicSansMS Chapter 9
Confiqure Chapters 4, 22, 24, 36 and 44
cormacrelf Chapter 10
Craig Brett Chapter 1
Creative John Chapter 18
cringe Chapter 29
Dániel Kis Chapter 45
dahlbyk Chapter 20
dan Chapter 14
Dan Hulme Chapter 1
Daniel Käfer Chapters 12, 14 and 50
Daniel Stradowski Chapter 14
Dartmouth Chapters 5, 25, 34, 43, 45, 47 and 48
David Ben Knoble Chapter 38
davidcondrey Chapters 2 and 10
Deep Chapters 10 and 26
Deepak Bansal Chapter 14
Devesh Saini Chapter 5
Dheeraj vats Chapter 5
Dimitrios Mistriotis Chapter 22
Dong Thang Chapter 49
dubek Chapter 17
Duncan X Simpson Chapter 14
e.doroskevic Chapters 12 and 13
Ed Cottrell Chapter 5
Eidolon Chapter 24
Elizabeth Chapter 45
enrico.bacis Chapter 5
ericdwang Chapter 10
eush77 Chapters 6, 11 and 16
eykanal Chapter 1
Ezra Free Chapter 25
Fabio Chapter 2
Farhad Faghihi Chapter 48
FeedTheWeb Chapter 48
Flows Chapters 2 and 24
forevergenin Chapters 3, 14 and 34
forresthopkinsa Chapter 22
fracz Chapters 5, 14 and 26
Fred Barclay Chapters 1, 10 and 14
frlan Chapter 29
Functino Chapter 5
fybw id Chapters 49 and 61

https://stackoverflow.com/users/62278/
https://stackoverflow.com/users/67022/
https://stackoverflow.com/users/4122020/
https://stackoverflow.com/users/4816518/
https://stackoverflow.com/users/2489497/
https://stackoverflow.com/users/1510063/
https://stackoverflow.com/users/57719/
https://stackoverflow.com/users/3710120/
https://stackoverflow.com/users/1470950/
https://stackoverflow.com/users/202095/
https://stackoverflow.com/users/577603/
https://stackoverflow.com/users/903291/
https://stackoverflow.com/users/559588/
https://stackoverflow.com/users/718940/
https://stackoverflow.com/users/5065086/
https://stackoverflow.com/users/834/
https://stackoverflow.com/users/5728926/
https://stackoverflow.com/users/54249/
https://stackoverflow.com/users/1613867/
https://stackoverflow.com/users/967945/
https://stackoverflow.com/users/1079174/
https://stackoverflow.com/users/5449709/
https://stackoverflow.com/users/4106184/
https://stackoverflow.com/users/4400820/
https://stackoverflow.com/users/1922144/
https://stackoverflow.com/users/4207394/
https://stackoverflow.com/users/6794259/
https://stackoverflow.com/users/2419921/
https://stackoverflow.com/users/4909765/
https://stackoverflow.com/users/1622/
https://stackoverflow.com/users/5597864/
https://stackoverflow.com/users/884/
https://stackoverflow.com/users/3042952/
https://stackoverflow.com/users/2346144/
https://stackoverflow.com/users/2057919/
https://stackoverflow.com/users/3064195/
https://stackoverflow.com/users/4750768/
https://stackoverflow.com/users/1003123/
https://stackoverflow.com/users/1944947/
https://stackoverflow.com/users/2424184/
https://stackoverflow.com/users/168775/
https://stackoverflow.com/users/1583032/
https://stackoverflow.com/users/2754856/
https://stackoverflow.com/users/2450855/
https://stackoverflow.com/users/2595183/
https://stackoverflow.com/users/2394026/
https://stackoverflow.com/users/2062000/
https://stackoverflow.com/users/2172566/
https://stackoverflow.com/users/878514/
https://stackoverflow.com/users/4588964/
https://stackoverflow.com/users/2915834/
https://stackoverflow.com/users/3601420/
https://stackoverflow.com/users/6924999/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 181

ganesshkumar Chapter 25
gavv Chapters 14 and 35
George Brighton Chapter 10
georgebrock Chapter 16
GingerPlusPlus Chapter 26
Glenn Smith Chapter 35
gnis Chapter 19
Greg Bray Chapter 50
Guillaume Chapter 29
Guillaume Pascal Chapters 5 and 36
guleria Chapter 2
hardmooth Chapter 22
heitortsergent Chapter 3
Henrique Barcelos Chapter 1
Horen Chapter 22
Hugo Buff Chapter 48
Hugo Ferreira Chapter 12
Igor Ivancha Chapter 10
Indregaard Chapter 36
intboolstring Chapters 2, 4, 5, 6, 9, 10, 12, 17 and 29
Isak Combrinck Chapter 57
J F Chapter 9
Jack Ryan Chapter 6
JakeD Chapter 6
Jakub Narębski Chapters 4, 5, 6, 26 and 43
james large Chapter 14
James Taylor Chapter 10
janos Chapters 1, 2 and 10
Jarede Chapter 26
Jason Chapter 14
Jav_Rock Chapters 1, 45 and 49
Jeff Puckett Chapter 27
jeffdill2 Chapters 1, 3, 6 and 26
Jens Chapter 5
jkdev Chapter 4
joaquinlpereyra Chapter 5
Joel Cornett Chapter 14
joeytwiddle Chapter 10
JonasCz Chapter 5
Jonathan Chapter 14
Jonathan Lam Chapter 1
Jordan Knott Chapter 10
Joseph Dasenbrock Chapters 1 and 14
Joseph K. Strauss Chapters 6 and 12
joshng Chapter 5
jpkrohling Chapter 16
jready Chapter 2
jtbandes Chapters 11 and 12
Julian Chapters 13 and 52
Julie David Chapters 3, 18 and 26
jwd630 Chapter 39
Kačer Chapter 5
Kageetai Chapter 1

https://stackoverflow.com/users/1184750/
https://stackoverflow.com/users/3169754/
https://stackoverflow.com/users/2765666/
https://stackoverflow.com/users/5168/
https://stackoverflow.com/users/3821804/
https://stackoverflow.com/users/214063/
https://stackoverflow.com/users/2407615/
https://stackoverflow.com/users/17373/
https://stackoverflow.com/users/857728/
https://stackoverflow.com/users/4186872/
https://stackoverflow.com/users/620039/
https://stackoverflow.com/users/1498405/
https://stackoverflow.com/users/1144141/
https://stackoverflow.com/users/1798341/
https://stackoverflow.com/users/1503476/
https://stackoverflow.com/users/3392335/
https://stackoverflow.com/users/1380781/
https://stackoverflow.com/users/4377017/
https://stackoverflow.com/users/2864568/
https://stackoverflow.com/users/4490559/
https://stackoverflow.com/users/7600596/
https://stackoverflow.com/users/5244995/
https://stackoverflow.com/users/4595837/
https://stackoverflow.com/users/6655092/
https://stackoverflow.com/users/46058/
https://stackoverflow.com/users/46058/
https://stackoverflow.com/users/46058/
https://stackoverflow.com/users/801894/
https://stackoverflow.com/users/1944335/
https://stackoverflow.com/users/641955/
https://stackoverflow.com/users/127606/
https://stackoverflow.com/users/545332/
https://stackoverflow.com/users/744859/
https://stackoverflow.com/users/4233593/
https://stackoverflow.com/users/2266827/
https://stackoverflow.com/users/925649/
https://stackoverflow.com/users/3345375/
https://stackoverflow.com/users/1960460/
https://stackoverflow.com/users/1142167/
https://stackoverflow.com/users/99777/
https://stackoverflow.com/users/4428462/
https://stackoverflow.com/users/69875/
https://stackoverflow.com/users/2397327/
https://stackoverflow.com/users/5785291/
https://stackoverflow.com/users/6738540/
https://stackoverflow.com/users/4354956/
https://stackoverflow.com/users/99749/
https://stackoverflow.com/users/524946/
https://stackoverflow.com/users/2887128/
https://stackoverflow.com/users/23649/
https://stackoverflow.com/users/201303/
https://stackoverflow.com/users/5216847/
https://stackoverflow.com/users/1124740/
https://stackoverflow.com/users/923255/
https://stackoverflow.com/users/923255/
https://stackoverflow.com/users/923255/
https://stackoverflow.com/users/1159510/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 182

Kalpit Chapters 3 and 45
Kamiccolo Chapter 2
Kapep Chapter 5
Kara Chapter 26
Karan Desai Chapter 28
kartik Chapters 14 and 25
KartikKannapur Chapters 1, 10, 25 and 48
Kay V Chapters 1 and 4
Kelum Senanayake Chapter 56
Keyur Ramoliya Chapter 54
khanmizan Chapters 6 and 14
kirrmann Chapter 14
kisanme Chapters 14 and 17
Kissaki Chapters 23 and 31
knut Chapter 5
kofemann Chapter 49
Koraktor Chapter 26
kowsky Chapter 9
KraigH Chapter 2
LeftRight92 Chapter 5
LeGEC Chapters 2 and 12
Liam Ferris Chapter 8
Libin Varghese Chapter 12
Liju Thomas Chapter 47
Liyan Chang Chapter 13
Lochlan Chapter 17
lostphilosopher Chapter 24
Luca Putzu Chapter 12
lucash Chapter 12
Mário Meyrelles Chapter 29
maccard Chapter 1
Mackattack Chapter 5
madhead Chapter 11
Majid Chapters 6, 10, 12, 14, 22 and 26
manasouza Chapters 2 and 26
Manishh Chapter 55
Mario Chapter 21
Martin Chapter 14
Martin Pecka Chapter 5
Marvin Chapters 5 and 29
Matas Vaitkevicius Chapter 52
Mateusz Piotrowski Chapter 16
Matt Clark Chapters 2 and 10
Matt S Chapter 29
Matthew Hallatt Chapters 2, 7, 10, 42 and 46
MayeulC Chapters 5, 10, 14, 19, 23 and 29
MByD Chapter 3
Micah Smith Chapter 10
Micha Wiedenmann Chapter 53
Michael Mrozek Chapter 12
Michael Plotke Chapter 21
Mitch Talmadge Chapters 5 and 14
mkasberg Chapter 15

https://stackoverflow.com/users/2424332/
https://stackoverflow.com/users/1150918/
https://stackoverflow.com/users/897024/
https://stackoverflow.com/users/881229/
https://stackoverflow.com/users/2828434/
https://stackoverflow.com/users/2381269/
https://stackoverflow.com/users/3001733/
https://stackoverflow.com/users/5440638/
https://stackoverflow.com/users/1699937/
https://stackoverflow.com/users/6326344/
https://stackoverflow.com/users/1425780/
https://stackoverflow.com/users/1025661/
https://stackoverflow.com/users/3663471/
https://stackoverflow.com/users/392626/
https://stackoverflow.com/users/676874/
https://stackoverflow.com/users/1356883/
https://stackoverflow.com/users/81071/
https://stackoverflow.com/users/7598462/
https://stackoverflow.com/users/1352436/
https://stackoverflow.com/users/5298389/
https://stackoverflow.com/users/86072/
https://stackoverflow.com/users/5363885/
https://stackoverflow.com/users/7274758/
https://stackoverflow.com/users/4714914/
https://stackoverflow.com/users/664345/
https://stackoverflow.com/users/1491909/
https://stackoverflow.com/users/1504372/
https://stackoverflow.com/users/755798/
https://stackoverflow.com/users/1406321/
https://stackoverflow.com/users/692083/
https://stackoverflow.com/users/723918/
https://stackoverflow.com/users/3928651/
https://stackoverflow.com/users/750510/
https://stackoverflow.com/users/877541/
https://stackoverflow.com/users/1119153/
https://stackoverflow.com/users/3759158/
https://stackoverflow.com/users/409744/
https://stackoverflow.com/users/412044/
https://stackoverflow.com/users/1076564/
https://stackoverflow.com/users/4616087/
https://stackoverflow.com/users/1509764/
https://stackoverflow.com/users/4694621/
https://stackoverflow.com/users/1790644/
https://stackoverflow.com/users/163024/
https://stackoverflow.com/users/894836/
https://stackoverflow.com/users/3795597/
https://stackoverflow.com/users/464988/
https://stackoverflow.com/users/2514228/
https://stackoverflow.com/users/1671066/
https://stackoverflow.com/users/309308/
https://stackoverflow.com/users/1307154/
https://stackoverflow.com/users/2364405/
https://stackoverflow.com/users/1263211/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 183

mpromonet Chapters 2, 9, 17 and 23
MrTux Chapter 41
mwarsco Chapter 24
mystarrocks Chapter 3
n0shadow Chapter 19
Narayan Acharya Chapter 5
Nathan Arthur Chapter 4
Nathaniel Ford Chapters 6 and 7
Nemanja Boric Chapter 12
Nemanja Trifunovic Chapter 50
nepda Chapter 14
Neui Chapters 1 and 5
nighthawk454 Chapters 30 and 42
Nithin K Anil Chapter 7
Noah Chapters 2, 8 and 14
Noushad PP Chapter 14
Nuri Tasdemir Chapter 5
nus Chapters 11 and 38
ob1 Chapter 1
Ogre Psalm33 Chapter 6
Oleander Chapter 2
olegtaranenko Chapter 14
orkoden Chapters 6 and 40
Ortomala Lokni Chapters 6, 12, 13 and 26
Ozair Kafray Chapter 14
P.J.Meisch Chapter 28
Pace Chapter 7
PaladiN Chapters 5, 9 and 14
Patrick Chapter 26
pcm Chapter 29
Pedro Pinheiro Chapters 2 and 50
penguincoder Chapters 6, 8 and 11
Peter Amidon Chapter 51
Peter Mitrano Chapters 12, 25 and 26
PhotometricStereo Chapter 28
pkowalczyk Chapter 25
pktangyue Chapter 5
Pod Chapters 1 and 10
pogosama Chapter 29
poke Chapter 5
Priyanshu Shekhar Chapters 13, 14, 19 and 42
pylang Chapters 5 and 12
Raghav Chapter 3
Ralf Rafael Frix Chapters 3, 14, 19 and 26
RedGreenCode Chapter 17
RhysO Chapter 5
Ricardo Amores Chapter 33
Richard Chapter 12
Richard Dally Chapter 4
Richard Hamilton Chapter 14
Rick Chapters 5, 7, 10, 25 and 36
riyadhalnur Chapter 11
Roald Nefs Chapter 1

https://stackoverflow.com/users/3102264/
https://stackoverflow.com/users/3906760/
https://stackoverflow.com/users/2635496/
https://stackoverflow.com/users/934307/
https://stackoverflow.com/users/1195935/
https://stackoverflow.com/users/5512274/
https://stackoverflow.com/users/937377/
https://stackoverflow.com/users/442945/
https://stackoverflow.com/users/133707/
https://stackoverflow.com/users/4004007/
https://stackoverflow.com/users/1021809/
https://stackoverflow.com/users/4792805/
https://stackoverflow.com/users/683114/
https://stackoverflow.com/users/1112259/
https://stackoverflow.com/users/6464719/
https://stackoverflow.com/users/5466933/
https://stackoverflow.com/users/1519458/
https://stackoverflow.com/users/1115652/
https://stackoverflow.com/users/8168719/
https://stackoverflow.com/users/13140/
https://stackoverflow.com/users/560073/
https://stackoverflow.com/users/455491/
https://stackoverflow.com/users/1329214/
https://stackoverflow.com/users/1807667/
https://stackoverflow.com/users/365188/
https://stackoverflow.com/users/4393565/
https://stackoverflow.com/users/202694/
https://stackoverflow.com/users/3887342/
https://stackoverflow.com/users/116249/
https://stackoverflow.com/users/2321151/
https://stackoverflow.com/users/1252947/
https://stackoverflow.com/users/812879/
https://stackoverflow.com/users/6676199/
https://stackoverflow.com/users/3353601/
https://stackoverflow.com/users/5883832/
https://stackoverflow.com/users/2351523/
https://stackoverflow.com/users/1076889/
https://stackoverflow.com/users/57461/
https://stackoverflow.com/users/3009574/
https://stackoverflow.com/users/216074/
https://stackoverflow.com/users/3655261/
https://stackoverflow.com/users/4531270/
https://stackoverflow.com/users/3639087/
https://stackoverflow.com/users/2530378/
https://stackoverflow.com/users/4803/
https://stackoverflow.com/users/5269656/
https://stackoverflow.com/users/10136/
https://stackoverflow.com/users/559845/
https://stackoverflow.com/users/5037799/
https://stackoverflow.com/users/4703663/
https://stackoverflow.com/users/1405475/
https://stackoverflow.com/users/2738732/
https://stackoverflow.com/users/4779556/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 184

Robin Chapter 14
rokonoid Chapter 5
ronnyfm Chapter 1
Salah Eddine Lahniche Chapter 3
saml Chapter 3
Sardathrion Chapter 22
Sascha Chapter 5
Sascha Wolf Chapter 5
SashaZd Chapter 48
Sazzad Hissain Khan Chapter 1
Scott Weldon Chapters 3, 5, 22, 23, 41 and 51
Sebastianb Chapters 5 and 26
SeeuD1 Chapter 5
shoelzer Chapter 46
Shog9 Chapter 23
Simone Carletti Chapters 14 and 41
sjas Chapter 5
SommerEngineering Chapter 10
sonali Chapter 45
Sonny Kim Chapter 10
spikeheap Chapter 5
Stony Chapter 23
strangeqargo Chapter 18
SurDin Chapter 6
Tall Sam Chapter 16
textshell Chapter 7
Thamilan Chapter 23
thanksd Chapter 11
the12 Chapter 14
TheDarkKnight Chapters 36 and 59
theJollySin Chapter 5
Thomas Crowley Chapter 60
tinlyx Chapter 9
Toby Chapters 5 and 20
Toby Allen Chapter 2
Tom Gijselinck Chapter 5
Tom Hale Chapter 11
Tomás Cañibano Chapters 26 and 29
Tomasz Bąk Chapter 5
Travis Chapter 12
Tyler Zika Chapter 1
tymspy Chapter 1
Undo Chapters 8, 9, 10 and 25
Uwe Chapter 14
Vi. Chapter 5
Victor Schröder Chapters 5, 12 and 44
Vivin George Chapter 3
Vlad Chapter 14
Vladimir F Chapter 10
Vogel612 Chapter 8
VonC Chapters 1, 3, 5, 9, 12 and 13
Wasabi Fan Chapter 12
Wilfred Hughes Chapter 5

https://stackoverflow.com/users/2895816/
https://stackoverflow.com/users/893197/
https://stackoverflow.com/users/204968/
https://stackoverflow.com/users/6253742/
https://stackoverflow.com/users/4405881/
https://stackoverflow.com/users/232794/
https://stackoverflow.com/users/66907/
https://stackoverflow.com/users/2274224/
https://stackoverflow.com/users/966247/
https://stackoverflow.com/users/1084174/
https://stackoverflow.com/users/2747593/
https://stackoverflow.com/users/5796253/
https://stackoverflow.com/users/3288649/
https://stackoverflow.com/users/1339280/
https://stackoverflow.com/users/811/
https://stackoverflow.com/users/123527/
https://stackoverflow.com/users/805284/
https://stackoverflow.com/users/2258393/
https://stackoverflow.com/users/4159318/
https://stackoverflow.com/users/5468799/
https://stackoverflow.com/users/384693/
https://stackoverflow.com/users/411918/
https://stackoverflow.com/users/5006740/
https://stackoverflow.com/users/70898/
https://stackoverflow.com/users/1740468/
https://stackoverflow.com/users/4973666/
https://stackoverflow.com/users/5447994/
https://stackoverflow.com/users/2678454/
https://stackoverflow.com/users/6407868/
https://stackoverflow.com/users/5283213/
https://stackoverflow.com/users/1287593/
https://stackoverflow.com/users/8330953/
https://stackoverflow.com/users/683218/
https://stackoverflow.com/users/1292918/
https://stackoverflow.com/users/6244/
https://stackoverflow.com/users/4667966/
https://stackoverflow.com/users/5353461/
https://stackoverflow.com/users/5384592/
https://stackoverflow.com/users/2777364/
https://stackoverflow.com/users/2777364/
https://stackoverflow.com/users/2777364/
https://stackoverflow.com/users/396746/
https://stackoverflow.com/users/1086315/
https://stackoverflow.com/users/3029163/
https://stackoverflow.com/users/1849664/
https://stackoverflow.com/users/3817004/
https://stackoverflow.com/users/266720/
https://stackoverflow.com/users/1240001/
https://stackoverflow.com/users/1663360/
https://stackoverflow.com/users/1634793/
https://stackoverflow.com/users/721644/
https://stackoverflow.com/users/1803692/
https://stackoverflow.com/users/6309/
https://stackoverflow.com/users/2422874/
https://stackoverflow.com/users/509706/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Git® Notes for Professionals 185

Will Chapter 6
Wojciech Kazior Chapters 11, 25 and 26
Wolfgang Chapters 4, 5, 8, 13 and 14
WPrecht Chapter 42
xiaoyaoworm Chapter 58
ydaetskcoR Chapter 5
Yerko Palma Chapter 14
Yury Fedorov Chapters 5 and 14
Zaz Chapters 6, 7, 10, 18, 23 and 37
zebediah49 Chapter 41
zygimantus Chapter 14
��ɴ�ʏɪ��ɪs Chapter 18
����� Chapters 6 and 12

https://stackoverflow.com/users/145279/
https://stackoverflow.com/users/6787033/
https://stackoverflow.com/users/1979340/
https://stackoverflow.com/users/597408/
https://stackoverflow.com/users/2011900/
https://stackoverflow.com/users/2291321/
https://stackoverflow.com/users/3178237/
https://stackoverflow.com/users/4378400/
https://stackoverflow.com/users/405550/
https://stackoverflow.com/users/372757/
https://stackoverflow.com/users/1766166/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/777510/
https://stackoverflow.com/users/389099/
https://stackoverflow.com/users/389099/
https://stackoverflow.com/users/389099/
https://stackoverflow.com/users/389099/
https://stackoverflow.com/users/389099/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

You may also like

https://goalkicker.com/AngularJSBook
https://goalkicker.com/BashBook
https://goalkicker.com/CBook
https://goalkicker.com/JavaBook
https://goalkicker.com/JavaScriptBook
https://goalkicker.com/jQueryBook
https://goalkicker.com/LinuxBook
https://goalkicker.com/NodeJSBook
https://goalkicker.com/MySQLBook

	Content list
	About
	Chapter 1: Getting started with Git
	Section 1.1: Create your ﬁrst repository, then add and commit ﬁles
	Section 1.2: Clone a repository
	Section 1.3: Sharing code
	Section 1.4: Setting your user name and email
	Section 1.5: Setting up the upstream remote
	Section 1.6: Learning about a command
	Section 1.7: Set up SSH for Git
	Section 1.8: Git Installation

	Chapter 2: Browsing the history
	Section 2.1: "Regular" Git Log
	Section 2.2: Prettier log
	Section 2.3: Colorize Logs
	Section 2.4: Oneline log
	Section 2.5: Log search
	Section 2.6: List all contributions grouped by author name
	Section 2.7: Searching commit string in git log
	Section 2.8: Log for a range of lines within a ﬁle
	Section 2.9: Filter logs
	Section 2.10: Log with changes inline
	Section 2.11: Log showing commited ﬁles
	Section 2.12: Show the contents of a single commit
	Section 2.13: Git Log Between Two Branches
	Section 2.14: One line showing commiter name and time since commit

	Chapter 3: Working with Remotes
	Section 3.1: Deleting a Remote Branch
	Section 3.2: Changing Git Remote URL
	Section 3.3: List Existing Remotes
	Section 3.4: Removing Local Copies of Deleted Remote Branches
	Section 3.5: Updating from Upstream Repository
	Section 3.6: ls-remote
	Section 3.7: Adding a New Remote Repository
	Section 3.8: Set Upstream on a New Branch
	Section 3.9: Getting Started
	Section 3.10: Renaming a Remote
	Section 3.11: Show information about a Speciﬁc Remote
	Section 3.12: Set the URL for a Speciﬁc Remote
	Section 3.13: Get the URL for a Speciﬁc Remote
	Section 3.14: Changing a Remote Repository

	Chapter 4: Staging
	Section 4.1: Staging All Changes to Files
	Section 4.2: Unstage a ﬁle that contains changes
	Section 4.3: Add changes by hunk
	Section 4.4: Interactive add
	Section 4.5: Show Staged Changes
	Section 4.6: Staging A Single File
	Section 4.7: Stage deleted ﬁles

	Chapter 5: Ignoring Files and Folders
	Section 5.1: Ignoring ﬁles and directories with a .gitignore ﬁle
	Section 5.2: Checking if a ﬁle is ignored
	Section 5.3: Exceptions in a .gitignore ﬁle
	Section 5.4: A global .gitignore ﬁle
	Section 5.5: Ignore ﬁles that have already been committed to a Git repository
	Section 5.6: Ignore ﬁles locally without committing ignore rules
	Section 5.7: Ignoring subsequent changes to a ﬁle (without removing it)
	Section 5.8: Ignoring a ﬁle in any directory
	Section 5.9: Preﬁlled .gitignore Templates
	Section 5.10: Ignoring ﬁles in subfolders (Multiple gitignore ﬁles)
	Section 5.11: Create an Empty Folder
	Section 5.12: Finding ﬁles ignored by .gitignore
	Section 5.13: Ignoring only part of a ﬁle [stub]
	Section 5.14: Ignoring changes in tracked ﬁles. [stub]
	Section 5.15: Clear already committed ﬁles, but included in .gitignore

	Chapter 6: Git Di
	Section 6.1: Show dierences in working branch
	Section 6.2: Show changes between two commits
	Section 6.3: Show dierences for staged ﬁles
	Section 6.4: Comparing branches
	Section 6.5: Show both staged and unstaged changes
	Section 6.6: Show dierences for a speciﬁc ﬁle or directory
	Section 6.7: Viewing a word-di for long lines
	Section 6.8: Show dierences between current version and last version
	Section 6.9: Produce a patch-compatible di
	Section 6.10: dierence between two commit or branch
	Section 6.11: Using meld to see all modiﬁcations in the working directory
	Section 6.12: Di UTF-16 encoded text and binary plist ﬁles

	Chapter 7: Undoing
	Section 7.1: Return to a previous commit
	Section 7.2: Undoing changes
	Section 7.3: Using reﬂog
	Section 7.4: Undoing merges
	Section 7.5: Revert some existing commits
	Section 7.6: Undo / Redo a series of commits

	Chapter 8: Merging
	Section 8.1: Automatic Merging
	Section 8.2: Finding all branches with no merged changes
	Section 8.3: Aborting a merge
	Section 8.4: Merge with a commit
	Section 8.5: Keep changes from only one side of a merge
	Section 8.6: Merge one branch into another

	Chapter 9: Submodules
	Section 9.1: Cloning a Git repository having submodules
	Section 9.2: Updating a Submodule
	Section 9.3: Adding a submodule
	Section 9.4: Setting a submodule to follow a branch
	Section 9.5: Moving a submodule
	Section 9.6: Removing a submodule

	Chapter 10: Committing
	Section 10.1: Stage and commit changes
	Section 10.2: Good commit messages
	Section 10.3: Amending a commit
	Section 10.4: Committing without opening an editor
	Section 10.5: Committing changes directly
	Section 10.6: Selecting which lines should be staged for committing
	Section 10.7: Creating an empty commit
	Section 10.8: Committing on behalf of someone else
	Section 10.9: GPG signing commits
	Section 10.10: Commiting changes in speciﬁc ﬁles
	Section 10.11: Committing at a speciﬁc date
	Section 10.12: Amending the time of a commit
	Section 10.13: Amending the author of a commit

	Chapter 11: Aliases
	Section 11.1: Simple aliases
	Section 11.2: List / search existing aliases
	Section 11.3: Advanced Aliases
	Section 11.4: Temporarily ignore tracked ﬁles
	Section 11.5: Show pretty log with branch graph
	Section 11.6: See which ﬁles are being ignored by your .gitignore conﬁguration
	Section 11.7: Updating code while keeping a linear history
	Section 11.8: Unstage staged ﬁles

	Chapter 12: Rebasing
	Section 12.1: Local Branch Rebasing
	Section 12.2: Rebase: ours and theirs, local and remote
	Section 12.3: Interactive Rebase
	Section 12.4: Rebase down to the initial commit
	Section 12.5: Conﬁguring autostash
	Section 12.6: Testing all commits during rebase
	Section 12.7: Rebasing before a code review
	Section 12.8: Aborting an Interactive Rebase
	Section 12.9: Setup git-pull for automatically perform a rebase instead of a merge
	Section 12.10: Pushing after a rebase

	Chapter 13: Conﬁguration
	Section 13.1: Setting which editor to use
	Section 13.2: Auto correct typos
	Section 13.3: List and edit the current conﬁguration
	Section 13.4: Username and email address
	Section 13.5: Multiple usernames and email address
	Section 13.6: Multiple git conﬁgurations
	Section 13.7: Conﬁguring line endings
	Section 13.8: conﬁguration for one command only
	Section 13.9: Setup a proxy

	Chapter 14: Branching
	Section 14.1: Creating and checking out new branches
	Section 14.2: Listing branches
	Section 14.3: Delete a remote branch
	Section 14.4: Quick switch to the previous branch
	Section 14.5: Check out a new branch tracking a remote branch
	Section 14.6: Delete a branch locally
	Section 14.7: Create an orphan branch (i.e. branch with no parent commit)
	Section 14.8: Rename a branch
	Section 14.9: Searching in branches
	Section 14.10: Push branch to remote
	Section 14.11: Move current branch HEAD to an arbitrary commit

	Chapter 15: Rev-List
	Section 15.1: List Commits in master but not in origin/master

	Chapter 16: Squashing
	Section 16.1: Squash Recent Commits Without Rebasing
	Section 16.2: Squashing Commit During Merge
	Section 16.3: Squashing Commits During a Rebase
	Section 16.4: Autosquashing and ﬁxups
	Section 16.5: Autosquash: Committing code you want to squash during a rebase

	Chapter 17: Cherry Picking
	Section 17.1: Copying a commit from one branch to another
	Section 17.2: Copying a range of commits from one branch to another
	Section 17.3: Checking if a cherry-pick is required
	Section 17.4: Find commits yet to be applied to upstream

	Chapter 18: Recovering
	Section 18.1: Recovering from a reset
	Section 18.2: Recover from git stash
	Section 18.3: Recovering from a lost commit
	Section 18.4: Restore a deleted ﬁle after a commit
	Section 18.5: Restore ﬁle to a previous version
	Section 18.6: Recover a deleted branch

	Chapter 19: Git Clean
	Section 19.1: Clean Interactively
	Section 19.2: Forcefully remove untracked ﬁles
	Section 19.3: Clean Ignored Files
	Section 19.4: Clean All Untracked Directories

	Chapter 20: Using a .gitattributes ﬁle
	Section 20.1: Automatic Line Ending Normalization
	Section 20.2: Identify Binary Files
	Section 20.3: Preﬁlled .gitattribute Templates
	Section 20.4: Disable Line Ending Normalization

	Chapter 21: .mailmap ﬁle: Associating contributor and email aliases
	Section 21.1: Merge contributers by aliases to show commit count in shortlog

	Chapter 22: Analyzing types of workﬂows
	Section 22.1: Centralized Workﬂow
	Section 22.2: Gitﬂow Workﬂow
	Section 22.3: Feature Branch Workﬂow
	Section 22.4: GitHub Flow
	Section 22.5: Forking Workﬂow

	Chapter 23: Pulling
	Section 23.1: Pulling changes to a local repository
	Section 23.2: Updating with local changes
	Section 23.3: Pull, overwrite local
	Section 23.4: Pull code from remote
	Section 23.5: Keeping linear history when pulling
	Section 23.6: Pull, "permission denied"

	Chapter 24: Hooks
	Section 24.1: Pre-push
	Section 24.2: Verify Maven build (or other build system) before committing
	Section 24.3: Automatically forward certain pushes to other repositories
	Section 24.4: Commit-msg
	Section 24.5: Local hooks
	Section 24.6: Post-checkout
	Section 24.7: Post-commit
	Section 24.8: Post-receive
	Section 24.9: Pre-commit
	Section 24.10: Prepare-commit-msg
	Section 24.11: Pre-rebase
	Section 24.12: Pre-receive
	Section 24.13: Update

	Chapter 25: Cloning Repositories
	Section 25.1: Shallow Clone
	Section 25.2: Regular Clone
	Section 25.3: Clone a speciﬁc branch
	Section 25.4: Clone recursively
	Section 25.5: Clone using a proxy

	Chapter 26: Stashing
	Section 26.1: What is Stashing?
	Section 26.2: Create stash
	Section 26.3: Apply and remove stash
	Section 26.4: Apply stash without removing it
	Section 26.5: Show stash
	Section 26.6: Partial stash
	Section 26.7: List saved stashes
	Section 26.8: Move your work in progress to another branch
	Section 26.9: Remove stash
	Section 26.10: Apply part of a stash with checkout
	Section 26.11: Recovering earlier changes from stash
	Section 26.12: Interactive Stashing
	Section 26.13: Recover a dropped stash

	Chapter 27: Subtrees
	Section 27.1: Create, Pull, and Backport Subtree

	Chapter 28: Renaming
	Section 28.1: Rename Folders
	Section 28.2: rename a local and the remote branch
	Section 28.3: Renaming a local branch

	Chapter 29: Pushing
	Section 29.1: Push a speciﬁc object to a remote branch
	Section 29.2: Push
	Section 29.3: Force Pushing
	Section 29.4: Push tags
	Section 29.5: Changing the default push behavior

	Chapter 30: Internals
	Section 30.1: Repo
	Section 30.2: Objects
	Section 30.3: HEAD ref
	Section 30.4: Refs
	Section 30.5: Commit Object
	Section 30.6: Tree Object
	Section 30.7: Blob Object
	Section 30.8: Creating new Commits
	Section 30.9: Moving HEAD
	Section 30.10: Moving refs around
	Section 30.11: Creating new Refs

	Chapter 31: git-tfs
	Section 31.1: git-tfs clone
	Section 31.2: git-tfs clone from bare git repository
	Section 31.3: git-tfs install via Chocolatey
	Section 31.4: git-tfs Check In
	Section 31.5: git-tfs push

	Chapter 32: Empty directories in Git
	Section 32.1: Git doesn't track directories

	Chapter 33: git-svn
	Section 33.1: Cloning the SVN repository
	Section 33.2: Pushing local changes to SVN
	Section 33.3: Working locally
	Section 33.4: Getting the latest changes from SVN
	Section 33.5: Handling empty folders

	Chapter 34: Archive
	Section 34.1: Create an archive of git repository
	Section 34.2: Create an archive of git repository with directory preﬁx
	Section 34.3: Create archive of git repository based on speciﬁc branch, revision, tag or directory

	Chapter 35: Rewriting history with ﬁlter-branch
	Section 35.1: Changing the author of commits
	Section 35.2: Setting git committer equal to commit author

	Chapter 36: Migrating to Git
	Section 36.1: SubGit
	Section 36.2: Migrate from SVN to Git using Atlassian conversion utility
	Section 36.3: Migrating Mercurial to Git
	Section 36.4: Migrate from Team Foundation Version Control (TFVC) to Git
	Section 36.5: Migrate from SVN to Git using svn2git

	Chapter 37: Show
	Section 37.1: Overview

	Chapter 38: Resolving merge conﬂicts
	Section 38.1: Manual Resolution

	Chapter 39: Bundles
	Section 39.1: Creating a git bundle on the local machine and using it on another

	Chapter 40: Display commit history graphically with Gitk
	Section 40.1: Display commit history for one ﬁle
	Section 40.2: Display all commits between two commits
	Section 40.3: Display commits since version tag

	Chapter 41: Bisecting/Finding faulty commits
	Section 41.1: Binary search (git bisect)
	Section 41.2: Semi-automatically ﬁnd a faulty commit

	Chapter 42: Blaming
	Section 42.1: Only show certain lines
	Section 42.2: To ﬁnd out who changed a ﬁle
	Section 42.3: Show the commit that last modiﬁed a line
	Section 42.4: Ignore whitespace-only changes

	Chapter 43: Git revisions syntax
	Section 43.1: Specifying revision by object name
	Section 43.2: Symbolic ref names: branches, tags, remote-tracking branches
	Section 43.3: The default revision: HEAD
	Section 43.4: Reﬂog references: <refname>@{<n>}
	Section 43.5: Reﬂog references: <refname>@{<date>}
	Section 43.6: Tracked / upstream branch: <branchname>@{upstream}
	Section 43.7: Commit ancestry chain: <rev>^, <rev>~<n>, etc
	Section 43.8: Dereferencing branches and tags: <rev>^0, <rev>^{<type>}
	Section 43.9: Youngest matching commit: <rev>^{/<text>}, :/<text>

	Chapter 44: Worktrees
	Section 44.1: Using a worktree
	Section 44.2: Moving a worktree

	Chapter 45: Git Remote
	Section 45.1: Display Remote Repositories
	Section 45.2: Change remote url of your Git repository
	Section 45.3: Remove a Remote Repository
	Section 45.4: Add a Remote Repository
	Section 45.5: Show more information about remote repository
	Section 45.6: Rename a Remote Repository

	Chapter 46: Git Large File Storage (LFS)
	Section 46.1: Declare certain ﬁle types to store externally
	Section 46.2: Set LFS conﬁg for all clones
	Section 46.3: Install LFS

	Chapter 47: Git Patch
	Section 47.1: Creating a patch
	Section 47.2: Applying patches

	Chapter 48: Git statistics
	Section 48.1: Lines of code per developer
	Section 48.2: Listing each branch and its last revision's date
	Section 48.3: Commits per developer
	Section 48.4: Commits per date
	Section 48.5: Total number of commits in a branch
	Section 48.6: List all commits in pretty format
	Section 48.7: Find All Local Git Repositories on Computer
	Section 48.8: Show the total number of commits per author

	Chapter 49: git send-email
	Section 49.1: Use git send-email with Gmail
	Section 49.2: Composing
	Section 49.3: Sending patches by mail

	Chapter 50: Git GUI Clients
	Section 50.1: gitk and git-gui
	Section 50.2: GitHub Desktop
	Section 50.3: Git Kraken
	Section 50.4: SourceTree
	Section 50.5: Git Extensions
	Section 50.6: SmartGit

	Chapter 51: Reﬂog - Restoring commits not shown in git log
	Section 51.1: Recovering from a bad rebase

	Chapter 52: TortoiseGit
	Section 52.1: Squash commits
	Section 52.2: Assume unchanged
	Section 52.3: Ignoring Files and Folders
	Section 52.4: Branching

	Chapter 53: External merge and ditools
	Section 53.1: Setting up KDi3 as merge tool
	Section 53.2: Setting up KDi3 as di tool
	Section 53.3: Setting up an IntelliJ IDE as merge tool (Windows)
	Section 53.4: Setting up an IntelliJ IDE as di tool (Windows)
	Section 53.5: Setting up Beyond Compare

	Chapter 54: Update Object Name in Reference
	Section 54.1: Update Object Name in Reference

	Chapter 55: Git Branch Name on Bash Ubuntu
	Section 55.1: Branch Name in terminal

	Chapter 56: Git Client-Side Hooks
	Section 56.1: Git pre-push hook
	Section 56.2: Installing a Hook

	Chapter 57: Git rerere
	Section 57.1: Enabling rerere

	Chapter 58: Change git repository name
	Section 58.1: Change local setting

	Chapter 59: Git Tagging
	Section 59.1: Listing all available tags
	Section 59.2: Create and push tag(s) in GIT

	Chapter 60: Tidying up your local and remote repository
	Section 60.1: Delete local branches that have been deleted on the remote

	Chapter 61: di-tree
	Section 61.1: See the ﬁles changed in a speciﬁc commit
	Section 61.2: Usage
	Section 61.3: Common di options

	Credits
	You may also like

